Cutaneous T-cell lymphoma (CTCL) is a rare cancer of skin-homing T cells. A subgroup of patients develops large cell transformation with rapid progression to an aggressive lymphoma. Here, we investigated the transformed CTCL (tCTCL) tumor ecosystem using integrative multiomics spanning whole-exome sequencing (WES), single-cell RNA sequencing, and immune profiling in a unique cohort of 56 patients. WES of 70 skin biopsies showed high tumor mutation burden, UV signatures that are prognostic for survival, exome-based driver events, and most recurrently mutated pathways in tCTCL. Single-cell profiling of 16 tCTCL skin biopsies identified a core oncogenic program with metabolic reprogramming toward oxidative phosphorylation (OXPHOS), cellular plasticity, upregulation of MYC and E2F activities, and downregulation of MHC I suggestive of immune escape. Pharmacologic perturbation using OXPHOS and MYC inhibitors demonstrated potent antitumor activities, whereas immune profiling provided in situ evidence of intercellular communications between malignant T cells expressing macrophage migration inhibitory factor and macrophages and B cells expressing CD74.
Significance:
Our study contributes a key resource to the community with the largest collection of tCTCL biopsies that are difficult to obtain. The multiomics data herein provide the first comprehensive compendium of genomic alterations in tCTCL and identify potential prognostic signatures and novel therapeutic targets for an incurable T-cell lymphoma.
The role of cutaneous human papillomavirus (HPV) infection in the development of subsequent cutaneous squamous cell carcinoma (SCC) is unknown. Pathologically confirmed cases of SCC (n = 150) enrolled in a previously conducted case-control study were included in a retrospective cohort study to examine the association of cutaneous HPV at the time of SCC diagnosis with the risk of subsequent SCC development. Data on HPV seropositivity, HPV DNA in eyebrow hairs (EB) and SCC tumors were available from the parent study. Incidence of subsequent SCC was estimated using person-years of follow up. Cox Proportional Hazards ratios were estimated to evaluate the associations of both, HPV seropositivity and HPV DNA positivity with subsequent SCC. The five year cumulative incidence of subsequent SCC was 72%. Seropositivity to cutaneous HPV was not associated with the risk of subsequent SCC (HR = 0.83, 95% CI = 0.41–1.67). Any beta HPV infection in EB was associated with reduced risk (HR = 0.30, 95% CI = 0.11–0.78) of subsequent SCC among cases who were positive for beta HPV DNA in tumor tissue. Infection with beta HPV type 2 (HR = 0.32, 95% CI = 0.12–0.86) in EB was associated with reduced risk of subsequent SCC among HPV DNA positive SCCs. In conclusion, beta HPV infection was inversely associated with the risk of subsequent SCC.
Supplementary Table from Genomic and Single-Cell Landscape Reveals Novel Drivers and Therapeutic Vulnerabilities of Transformed Cutaneous T-cell Lymphoma
Supplementary Table from Genomic and Single-Cell Landscape Reveals Novel Drivers and Therapeutic Vulnerabilities of Transformed Cutaneous T-cell Lymphoma
Supplementary Table from Genomic and Single-Cell Landscape Reveals Novel Drivers and Therapeutic Vulnerabilities of Transformed Cutaneous T-cell Lymphoma
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.