We present a new fully conjugated diblock copolymer, P3HT-b-PFTBTT, containing donor and acceptor blocks with suitably positioned energy levels for use in a solar cell. This is the first block copolymer to be based on an existing high-performance polymer:polymer blend. We observe phase separation of the blocks and self-assembly behavior. In ternary blends with the respective homopolymers the diblock copolymer introduces lateral nanostructure without restricting P3HT crystallization in the charge transport direction, resulting in standing lamellae. By adding the diblock to the homopolymer blend as a compatibilizer, we prevent phase separation at elevated temperatures and benefit from a dramatic increase in P3HT ordering, allowing us to demonstrate polymer blend photovoltaics where the nanostructure is thermodynamically, rather than kinetically, controlled.
We present the synthesis, purification, and characterization
of
all-conjugated block copolymers comprising poly((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(3-hexylthien-5-yl)-2,1,3-benzothiadiazole]-2′,2″-diyl)
(PF8TBT) and poly(3-hexylthiophene) (P3HT). Suzuki step-growth polycondensation
is used for the synthesis of PF8TBT, which is subsequently terminated
via the addition of narrow-distributed, monobrominated P3HT-Br. Purification
via preparative GPC is carried out to reduce polydispersity and to
remove excess P3HT. Wavelength-dependent GPC and careful NMR end group
analysis, assisted by model compounds, reveal pure diblock copolymers
of PF8TBT-b-P3HT. Insight into structure formation
is given by temperature-dependent UV–vis absorption, DSC, and
X-ray scattering. These indicate that PF8TBT-b-P3HT
does not microphase-separate within the investigated range of composition
and molecular weight. The critical role of introducing sufficient
dissimilarity between the segments in all-conjugated block copolymers
in order to induce phase separation is discussed, with the conclusion
that careful tuning of side chains is crucial for achieving self-organization.
We report the electronic properties of the conjugated coupling between a donor polymer and an acceptor segment serving as a model for the coupling in conjugated donor-acceptor block copolymers. These structures allow the study of possible intrachain photoinduced charge separation, in contrast to the interchain separation achieved in conventional donor-acceptor blends. Depending on the nature of the conjugated linkage, we observe varying degrees of modification of the excited states, including the formation of intrachain charge transfer excitons. The polymers comprise a block (typically 18 repeat units) of P3HT, poly(3-hexyl thiophene), coupled to a single unit of F8-TBT (where F8 is dioctylfluorene, and TBT is thiophene-benzothiadiazole-thiophene). When the P3HT chain is linked to the TBT unit, we observe formation of a localized charge transfer state, with red-shifted absorption and emission. Independent of the excitation energy, this state is formed very rapidly (<40 fs) and efficiently. Because there is only a single TBT unit present, there is little scope for long-range charge separation and it is relatively short-lived, <1 ns. In contrast, when the P3HT chain and TBT unit are separated by the wider bandgap F8 unit, there is little indication for modification of either ground or excited electronic states, and longer-lived charge separated states are observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.