The asphalt-concrete pavement is an essential component of the bridge deck. Its stress characteristics are different from the general pavement structure. This research employs finite element technology (ANSYS) to model a three-span bridge and pavement layer in order to ascertain the stress distribution and provide a deeper knowledge of the mechanical properties of the pavement layer on concrete bridge decks. The effects of varying the thickness and stiffness of the deck pavement on the stress distribution in its different layers were investigated. Stress absorption is increased as the stiffness of the deck layers increases, and with increases in pavement thickness, stress on pavement layers decreases. The response of deck pavement under moving load, both under full bonding and sliding conditions, was simulated to determine stress distribution. By comparing the response under the full bonding and sliding conditions, it was found that stress induced on layers during sliding is high as compared to the full bonding condition; pavement layers will be prone to failure if sliding occurs between layers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.