(trans-R, R)-1,2-diaminocyclohexaneoxalatoplatinum(II) (oxaliplatin) is a recently approved platinum analogue for use in the chemotherapy of metastatic colorectal cancer. Like many cytotoxic drugs, oxaliplatin exerts its antitumor effects by covalent modification of DNA. We report an accelerator mass spectrometry (AMS) assay to measure the kinetics of oxaliplatin-induced DNA damage and repair. We determined the apparent rate of oxaliplatin adduction to salmon sperm DNA. The oxaliplatin-DNA adduct distribution was further investigated at the nucleoside level by HPLC-AMS. Cultured platinum-sensitive testicular (833K) and platinum-resistant breast and bladder (MDA-MB-231 and T24, respectively) cancer cells were incubated with a subpharmacological concentration of oxaliplatin (0.2 microM). Both cellular and DNA radiocarbon contents in the drug-sensitive testicular cells had approximately twice the area under the curve as compared to the more platinum-resistant cell lines, implying that differential accumulation of the drug may be responsible for the sensitivity of cancer cells to platinum treatment. The lowest concentration of radiocarbon measured was approximately 1+/-0.1 amol/microg of DNA, when assaying 1 microg of DNA. This sensitivity for measuring oxaliplatin-DNA adducts is the highest reported to date. The sensitivity offered by this method may be applicable to other DNA-damaging drugs, metabolisms studies, and diagnostics development.
Growing evidence suggests that oxidative damage to cells generates mutagenic 7,8-dihydro-8-oxo-2 -deoxyguanosine (8-oxodG), which may initiate diseases related to aging and carcinogenesis. Kinetic measurement of 8-oxodG metabolism and repair in cells has been hampered by poor assay sensitivity and by difficulty characterizing the flux of oxidized nucleotides through the relevant metabolic pathways. We report here the development of a sensitive and quantitative approach to characterizing the kinetics and metabolic sources of 8-oxodG in MCF-7 human breast cancer cells by accelerator mass spectrometry. We observed that [ 14 C]8-oxodG at medium concentrations of up to 2 pmol/ml was taken up by MCF-7 cells, phosphorylated to mono-, di-, and triphosphate derivatives, and incorporated into DNA. Oxidative stress caused by exposure of the cells to 17-estradiol resulted in a reduction in the rate of [ 14 C]8-oxodG incorporation into DNA and an increase in the ratio of 8-oxodG monophosphate (8-oxodGMP) to 8-oxodG triphosphate (8-oxodGTP) in the nucleotide pool. 17-Estradiolinduced oxidative stress up-regulated the nucleotide pool cleansing enzyme MTH1 and possibly other Nudix-related pyrophosphohydrolases. These data support the conclusion that 8-oxodGTP is formed in the nucleotide pool by both 8-oxodG metabolism and endogenous reactive oxygen species. The metabolism of 8-oxodG to 8-oxodGTP, followed by incorporation into DNA is a mechanism by which the cellular presence of this oxidized nucleoside can lead to mutations.DNA repair ͉ nucleoside metabolism ͉ oxidative stress ͉ breast cancer
Hydrogenases constitute a promising class of enzymes for ex vivo hydrogen production. Implementation of such applications is currently hindered by oxygen sensitivity and, in the case of membrane-bound hydrogenases (MBHs), poor water solubility. Nanolipoprotein particles (NLPs) formed from apolipoproteins and phospholipids offer a novel means of incorporating MBHs into a well-defined water-soluble matrix that maintains the enzymatic activity and is amenable to incorporation into more complex architectures. We report the synthesis, hydrogen-evolving activity, and physical characterization of the first MBH-NLP assembly. This may ultimately lead to the development of biomimetic hydrogen-production devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.