Engineering smart software that can monitor, predict, and control blood glucose is critical to improving patients' quality of treatments with type 1 Diabetic Mellitus (T1DM). However, ensuring a reasonable glycemic level in diabetic patients is quite challenging, as many methods do not adequately capture the complexities involved in glycemic control. This problem introduces a new level of complexity and uncertainty to the patient's psychological state, thereby making this problem nonlinear and unobservable. In this paper, we formulated a mathematical model using carbohydrate counting, insulin requirements, and the Harris-Benedict energy equations to establish the framework for predicting and controlling blood glucose level regulation in T1DM. We implemented the framework and evaluated its performance using root mean square error (RMSE) and mean absolute error (MAE) on a case study. Our framework had less error rate in terms of RMSE and MAE, which indicates a better fit with reasonable accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.