CD1d-reactive natural killer T (NKT) cells with an invariant V alpha 14 rearrangement (V alpha 14i) are a distinct subset of T lymphocytes that likely have important immune-regulatory functions. Little is known regarding the factors responsible for their peripheral survival. Using alpha-galactosylceramide-containing CD1d tetramers to detect V alpha 14i NKT cells, we show here that the expansion of V alpha 14i NKT cells in lymphopenic mice was not dependent on CD1d expression and was unaffected by the presence of host NKT cells. Additionally, we found that IL-15 was important in the expansion and/or survival of V alpha 14i NKT cells, with IL-7 playing a lesser role. These results demonstrate that the homeostatic requirements for CD1d-restricted NKT cells, which are CD4(+) or CD4(-)CD8(-), resemble those of CD8(+) memory T cells. We propose that this expansion and/or survival in the periphery of V alpha 14i NKT cells is affected by competition for IL-15, and that IL-15-requiring cells-such as NK cells and CD8(+) memory cells-may define the V alpha 14i NKT cell niche.
Mesenchymal stem (stromal) cells (MSCs) are rare, multipotent progenitor cells that can be isolated and expanded from bone marrow and other tissues. Strikingly, MSCs modulate the functions of immune cells, including T cells, B cells, natural killer cells, monocyte/macrophages, dendritic cells, and neutrophils. T cells, activated to perform a range of different effector functions, are the primary mediators of many autoimmune and inflammatory diseases as well as of transplant rejection and graft-versus-host disease. Well-defined T-cell effector phenotypes include the CD4+ (T helper cell) subsets Th1, Th2, and Th17 cells and cytotoxic T lymphocytes derived from antigen-specific activation of naïve CD8+ precursors. In addition, naturally occurring and induced regulatory T cells (Treg) represent CD4+ and CD8+ T-cell phenotypes that potently suppress effector T cells to prevent autoimmunity, maintain self-tolerance, and limit inflammatory tissue injury. Many immune-mediated diseases entail an imbalance between Treg and effector T cells of one or more phenotypes. MSCs broadly suppress T-cell activation and proliferation in vitro via a plethora of soluble and cell contact-dependent mediators. These mediators may act directly upon T cells or indirectly via modulation of antigen-presenting cells and other accessory cells. MSC administration has also been shown to be variably associated with beneficial effects in autoimmune and transplant models as well as in several human clinical trials. In a small number of studies, however, MSC administration has been found to aggravate T cell-mediated tissue injury. The multiple effects of MSCs on cellular immunity may reflect their diverse influences on the different T-cell effector subpopulations and their capacity to specifically protect or induce Treg populations. In this review, we focus on findings from the recent literature in which specific modulatory effects of MSCs on one or more individual effector T-cell subsets and Treg phenotypes have been examined in vitro, in relevant animal models of in vivo immunological disease, and in human subjects. We conclude that MSCs have the potential to directly or indirectly inhibit disease-associated Th1, Th2, and Th17 cells as well as cytotoxic T lymphocytes but that many key questions regarding the potency, specificity, mechanistic basis, and predictable therapeutic value of these modulatory effects remain unanswered.
The thymus is regarded as the primary site for T-cell lymphopoiesis, but very little is known about the lineage inter-relationships of cells within that organ. At least four subpopulations of mouse thymocytes can be defined on the basis of staining with monoclonal antibodies directed against the T-cell differentiation antigens Lyt-2 and L3T4 (ref. 2). Thus immunocompetent (medullary) thymocytes, like peripheral T cells, express either Lyt-2 (cytotoxic phenotype) or L3T4 (helper phenotype) but not both, whereas non-functional (cortical) thymocytes express both markers. In addition, a small subpopulation comprising 2-3% of cells in the thymus and expressing neither Lyt-2 nor L3T4 has recently been described. The latter cells have the properties of intrathymic 'stem cells' in that they are the first to appear in the embryonic thymus and at least some can be shown to give rise, both in vivo (ref. 4. and our unpublished data) and in vitro, to other thymocyte subpopulations. We show here that 50% of Lyt-2-/L3T4- cells in the adult thymus express receptors for the polypeptide growth hormone interleukin-2 (IL-2) whereas other cells in the thymus do not. Furthermore, immunohistochemical localization studies on frozen sections indicate a disperse distribution of IL-2 receptor-positive cells in both the cortex and medulla. These novel findings have potential implications in the context of current models of differentiation pathways within the thymus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.