Heliozoan protists have radiating cell projections (axopodia) supported by microtubular axonemes nucleated by the centrosome and bearing granule-like extrusomes for catching prey. To clarify previously confused heliozoan phylogeny we sequenced partial transcriptomes of two tiny naked heliozoa, the endohelean Microheliella maris and centrohelid Oxnerella marina, and the cercozoan pseudoheliozoan Minimassisteria diva. Phylogenetic analysis of 187 genes confirms that all are chromists; but centrohelids (microtubules arranged as hexagons and triangles) are not sisters to Endohelea having axonemes in transnuclear cytoplasmic channels (triangular or square microtubular arrays). Centrohelids are strongly sister to haptophytes (together phylum Haptista); we explain the common origins of their axopodia and haptonema. Microheliella is sister to new superclass Corbistoma (zooflagellate Telonemea and Picomonadea, with asymmetric microfilamentous pharyngeal basket), showing that these axopodial protists evolved independently from zooflagellate ancestors. We group Corbistoma and Endohelea as new cryptist subphylum Corbihelia with dense fibrillar interorganellar connections; endohelean axopodia and Telonema cortex are ultrastructurally related. Differently sampled trees clarify why corticate multigene eukaryote phylogeny is problematic: long-branch artefacts probably distort deep multigene phylogeny of corticates (Plantae, Chromista); basal radiations may be contradictorily reconstructed because of their extreme closeness and the Bayesian star-tree paradox. Haptista and Hacrobia are holophyletic, and Chromista probably are.
Animals and fungi independently evolved from the protozoan phylum Choanozoa, these three groups constituting a major branch of the eukaryotic evolutionary tree known as opisthokonts. Opisthokonts and the protozoan phylum Amoebozoa (amoebae plus slime moulds) were previously argued to have evolved independently from the little-studied, largely flagellate, protozoan phylum, Sulcozoa. Sulcozoa are a likely evolutionary link between opisthokonts and the more primitive excavate flagellates that have ventral feeding grooves and the most primitive known mitochondria. To extend earlier sparse evidence for the ancestral (paraphyletic) nature of Sulcozoa, we sequenced transcriptomes from six gliding flagellates (two apusomonads; three planomonads; Mantamonas). Phylogenetic analyses of 173-192 genes and 73-122 eukaryote-wide taxa show Sulcozoa as deeply paraphyletic, confirming that opisthokonts and Amoebozoa independently evolved from sulcozoans by losing their ancestral ventral groove and dorsal pellicle: Apusozoa (apusomonads plus anaerobic breviate amoebae) are robustly sisters to opisthokonts and probably paraphyletic, breviates diverging before apusomonads; Varisulca (planomonads, Mantamonas, and non-gliding flagellate Collodictyon) are sisters to opisthokonts plus Apusozoa and Amoebozoa, and possibly holophyletic; Glissodiscea (planomonads, Mantamonas) may be holophyletic, but Mantamonas sometimes groups with Collodictyon instead. Taxon and gene sampling slightly affects tree topology; for the closest branches in Sulcozoa and opisthokonts, proportionally reducing missing data eliminates conflicts between homogeneous-model maximum-likelihood trees and evolutionarily more realistic site-heterogeneous trees. Sulcozoa, opisthokonts, and Amoebozoa constitute an often-pseudopodial 'podiate' clade, one of only three eukaryotic 'supergroups'. Our trees indicate that evolution of sulcozoan dorsal pellicle, ventral pseudopodia, and ciliary gliding (probably simultaneously) generated podiate eukaryotes from Malawimonas-like excavate flagellates.
Monophyly of protozoan phylum Amoebozoa, and subdivision into subphyla Conosa and Lobosa each with different cytoskeletons, are well established. However early diversification of non-ciliate lobose amoebae (Lobosa) is poorly understood. To clarify it we used recently available transcriptomes to construct a 187-gene amoebozoan tree for 30 species, the most comprehensive yet. This robustly places new genus Atrichosa (formerly lumped with Trichosphaerium) within lobosan class Tubulinea, not Discosea as previously supposed. We identified an earliest diverging lobosan clade comprising marine amoebae armoured by porose scaliform cell-envelopes, here made a novel class Cutosea with two pseudopodially distinct new families. Cutosea comprise Sapocribrum, ATCC PRA-29 misidentified as 'Pessonella', plus from other evidence Squamamoeba. We confirm that Acanthamoeba and ATCC 50982 misidentified as Stereomyxa ramosa are closely related. Discosea have a strongly supported major subclade comprising Thecamoebida plus Glycostylida (suborders Dactylopodina, Stygamoebina; Vannellina) phylogenetically distinct from Centramoebida. Stygamoeba is sister to Dactylopodina. Himatismenida are either sister to Centramoebida or deeper branching. Discosea usually appear holophyletic (rarely paraphyletic). Paramoeba transcriptomes include prokinetoplastid Perkinsela-like endosymbiont sequences. Cunea, misidentified as Mayorella, is closer to Paramoeba than Vexillifera within holophyletic Dactylopodina. Taxon-rich site-heterogeneous rDNA trees confirm cutosan distinctiveness, allow improved conosan taxonomy, and reveal previous dictyostelid tree misrooting.
Amoebozoa is a key phylum for eukaryote phylogeny and evolutionary history, but its phylogenetic validity has been questioned since included species are very diverse: amoebo-flagellate slime-moulds, naked and testate amoebae, and some flagellates. 18S rRNA gene trees have not firmly established its internal topology. To rectify this we sequenced cDNA libraries for seven diverse Amoebozoa and conducted phylogenetic analyses for 109 eukaryotes (17-18 Amoebozoa) using 60-188 genes. We conducted Bayesian inferences with the evolutionarily most realistic site-heterogeneous CAT-GTR-Γ model and maximum likelihood analyses. These unequivocally establish the monophyly of Amoebozoa, showing a primary dichotomy between the previously contested subphyla Lobosa and Conosa. Lobosa, the entirely non-flagellate lobose amoebae, are robustly partitioned into the monophyletic classes Tubulinea, with predominantly tube-shaped pseudopodia, and Discosea with flattened cells and different locomotion. Within Conosa 60/70-gene trees with very little missing data show a primary dichotomy between the aerobic infraphylum Semiconosia (Mycetozoa and Variosea) and secondarily anaerobic Archamoebae. These phylogenetic features are entirely congruent with the most recent major amoebozoan classification emphasising locomotion modes, pseudopodial morphology, and ultrastructure. However, 188-gene trees where proportionally more taxa have sparser gene-representation weakly place Archamoebae as sister to Macromycetozoa instead, possibly a tree reconstruction artefact of differentially missing data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.