Collagen's long half-life (in skin approximately 10 years) makes this protein highly susceptible to glycation and formation of the advanced glycation end products (AGEs). Accumulation of cross-linking AGEs in the skin collagen has several detrimental effects; thus, the opportunity for non-invasive monitoring of skin glycation is essential, especially for diabetic patients. In this paper, we report using the time-resolved intrinsic fluorescence of collagen as a biomarker of its glycation. Contrary to the traditional fluorescence intensity decay measurement at the arbitrarily selected excitation and detection wavelengths, we conducted systematic wavelength-and time-resolved measurements to achieve time-resolved emission spectra. Changes in the intrinsic fluorescence kinetics, caused by both collagen aggregation and glycation, have been detected.
We have studied the evolution of keratin intrinsic fluorescence as an indicator of its glycation. Steady-state and time-resolved fluorescence of free keratin and keratin-glucose samples were detected in PBS solutions in vitro. The changes in the fluorescence response demonstrate that the effect of glucose is manifest in the accelerated formation of fluorescent cross-links with an emission peak at 460 nm and formation of new cross-links with emission peaks at 525 nm and 575 nm. The fluorescence kinetics of these structures is studied and their potential application for the detection of long-term complications of diabetes discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.