Neutralization of carboxylic acid is an important means to avoid sialic acid dissociation when sialylated glycans are analyzed by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). In this paper, we describe a simple and rapid method to modify the sialic acids of sialylated glycans in the presence of methylamine and (7-azabenzotriazol-1-yloxy) trispyrrolidinophosphonium hexafluorophosphate (PyAOP). After methylamidation, sialylated glycans can be analyzed by MALDI-MS without loss of the sialic acid moiety. The electrospray ionization mass spectrometry (ESI-MS) and MALDI-MS analysis of both 3'- and 6'-sialyllactose derivatives indicated that the quantitative conversion of sialic acids was achieved, regardless of their linkage types. This derivatization strategy was further validated with the N-glycans released from three standard glycoproteins (fetuin, human acid glycoprotein, and bovine acid glycoprotein) containing different types of complex glycans. Most importantly, this derivatization method enabled the successful characterization of N-glycans of sera from different species (human, mouse, and rat) by MALDI-MS. Because of the mild reaction conditions, the modification in sialic acid residues can be retained. This improvement makes it possible to detect sialylated glycans containing O-acetylated sialic acid moieties using MALDI-MS in positive-ion mode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.