A drop within a drop within a drop: A microfluidic technique is used to generate highly controlled multiple emulsions (see picture). The high degree of control and scalability afforded by this method makes it a flexible and promising route for engineering designer emulsions and microcapsules with multiphase structures. Moreover, its generality will enable fabrication of novel materials containing complex internal structures.
We describe droplet microfluidic strategies used to fabricate advanced microparticles that are useful structures for the encapsulation and release of actives; these strategies can be further developed to produce microparticles for advanced drug delivery applications. Microfluidics enables exquisite control in the fabrication of polymer vesicles and thermosensitive microgels from single and higher-order multiple emulsion templates. The strategies used to create the diversity of microparticle structures described in this review, coupled with the scalability of microfluidics, will enable fabrication of large quantities of novel microparticle structures that have potential uses in controlled drug release applications.
We present a simple microfluidics-based technique to fabricate Janus particles using double-emulsion droplets as templates. Since each half of the particles is templated from a different immiscible fluid, this method enables the formation of particles from two materials with vastly different properties. The use of microfluidics affords excellent control over the size, morphology, and monodispersity of the particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.