The SARS-CoV-2 Delta (Pango lineage B.1.617.2) variant of concern spread globally, causing resurgences of COVID-19 worldwide1,2. The emergence of the Delta variant in the UK occurred on the background of a heterogeneous landscape of immunity and relaxation of non-pharmaceutical interventions. Here we analyse 52,992 SARS-CoV-2 genomes from England together with 93,649 genomes from the rest of the world to reconstruct the emergence of Delta and quantify its introduction to and regional dissemination across England in the context of changing travel and social restrictions. Using analysis of human movement, contact tracing and virus genomic data, we find that the geographic focus of the expansion of Delta shifted from India to a more global pattern in early May 2021. In England, Delta lineages were introduced more than 1,000 times and spread nationally as non-pharmaceutical interventions were relaxed. We find that hotel quarantine for travellers reduced onward transmission from importations; however, the transmission chains that later dominated the Delta wave in England were seeded before travel restrictions were introduced. Increasing inter-regional travel within England drove the nationwide dissemination of Delta, with some cities receiving more than 2,000 observable lineage introductions from elsewhere. Subsequently, increased levels of local population mixing—and not the number of importations—were associated with the faster relative spread of Delta. The invasion dynamics of Delta depended on spatial heterogeneity in contact patterns, and our findings will inform optimal spatial interventions to reduce the transmission of current and future variants of concern, such as Omicron (Pango lineage B.1.1.529).
The Delta variant of concern of SARS-CoV-2 has spread globally causing large outbreaks and resurgences of COVID-19 cases. The emergence of Delta in the UK occurred on the background of a heterogeneous landscape of immunity and relaxation of non-pharmaceutical interventions. Here we analyse 52,992 Delta genomes from England in combination with 93,649 global genomes to reconstruct the emergence of Delta, and quantify its introduction to and regional dissemination across England, in the context of changing travel and social restrictions. Through analysis of human movement, contact tracing, and virus genomic data, we find that the focus of geographic expansion of Delta shifted from India to a more global pattern in early May 2021. In England, Delta lineages were introduced >1,000 times and spread nationally as non-pharmaceutical interventions were relaxed. We find that hotel quarantine for travellers from India reduced onward transmission from importations; however the transmission chains that later dominated the Delta wave in England had been already seeded before restrictions were introduced. In England, increasing inter- regional travel drove Delta's nationwide dissemination, with some cities receiving >2,000 observable lineage introductions from other regions. Subsequently, increased levels of local population mixing, not the number of importations, was associated with faster relative growth of Delta. Among US states, we find that regions that previously experienced large waves also had faster Delta growth rates, and a model including interactions between immunity and human behaviour could accurately predict the rise of Delta there. Delta's invasion dynamics depended on fine scale spatial heterogeneity in immunity and contact patterns and our findings will inform optimal spatial interventions to reduce transmission of current and future VOCs such as Omicron.
SARS-CoV-2 variants of concern (VOCs) arise against the backdrop of increasingly heterogeneous human connectivity and population immunity. Through a large-scale phylodynamic analysis of 115,622 Omicron genomes, we identified >6,000 independent introductions of the antigenically distinct virus into England and reconstructed the dispersal history of resulting local transmission. Travel restrictions on southern Africa did not reduce BA.1 importation intensity as secondary hubs became major exporters. We explored potential drivers of BA.1 spread across England and discovered an early period during which viral lineage movements mainly occurred between larger cities, followed by a multi-focal spatial expansion shaped by shorter distance mobility patterns. We also found evidence that disease incidence impacted human commuting behaviours around major travel hubs. Our results offer a detailed characterisation of processes that drive the invasion of an emerging VOC across multiple spatial scales and provide unique insights on the interplay between disease spread and human mobility.
The second SARS virus, SARS-CoV-2, emerged in December 2019, and within a month was globally distributed. It was first introduced into Scotland in February 2020 associated with returning travellers and visitors. By March it was circulating in communities across the UK, and to control COVID-19 cases, and prevent overwhelming of the National Health Service (NHS), a ‘lockdown’ was introduced on 23rd March 2020 with a restriction of people’s movements. To augment the public health efforts a large-scale genome epidemiology effort (as part of the COVID-19 Genomics UK (COG-UK) consortium) resulted in the sequencing of over 5000 SARS-CoV-2 genomes by 18th August 2020 from Scottish cases, about a quarter of the estimated number of cases at that time. Here we quantify the geographical origins of the first wave introductions into Scotland from abroad and other UK regions, the spread of these SARS-CoV-2 lineages to different regions within Scotland (defined at the level of NHS Health Board) and the effect of lockdown on virus ‘success’. We estimate that approximately 300 introductions seeded lineages in Scotland, with around 25% of these lineages composed of more than five viruses, but by June circulating lineages were reduced to low levels, in line with low numbers of recorded positive cases. Lockdown was, thus, associated with a dramatic reduction in infection numbers and the extinguishing of most virus lineages. Unfortunately since the summer cases have been rising in Scotland in a second wave, with >1000 people testing positive on a daily basis, and hospitalisation of COVID-19 cases on the rise again. Examining the available Scottish genome data from the second wave, and comparing it to the first wave, we find that while some UK lineages have persisted through the summer, the majority of lineages responsible for the second wave are new introductions from outside of Scotland and many from outside of the UK. This indicates that, while lockdown in Scotland is directly linked with the first wave case numbers being brought under control, travel-associated imports (mostly from Europe or other parts of the UK) following the easing of lockdown are responsible for seeding the current epidemic population. This demonstrates that the impact of stringent public health measures can be compromised if following this, movements from regions of high to low prevalence are not minimised.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.