A large number of deaths have been caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) worldwide, turning it into a serious and momentous threat to public health. This study tends to contribute to the development of effective treatment strategies through a computational approach, investigating the mechanisms in relation to the binding and subsequent inhibition of SARS-CoV-2 ribonucleic acid (RNA)-dependent RNA polymerase (RdRp). Molecular docking was performed to screen six naturally occurring molecules with antineoplastic properties (Ellipticine, Ecteinascidin, Homoharringtonine, Dolastatin 10, Halichondrin, and Plicamycin). Absorption, distribution, metabolism, and excretion (ADME) investigation was also conducted to analyze the drug-like properties of these compounds. The docked results have clearly shown binding of ligands to the SARS-CoV-2 RdRp protein. Interestingly, all ligands were found to obey Lipinski’s rule of five. These results provide a basis for repurposing and using molecules, derived from plants and animals, as a potential treatment for the coronavirus disease 2019 (COVID-19) infection as they could be effective therapeutics for the same.
Burn injury has been a major cause of morbidity at global levels. They can occur by multiple agents, such as thermal radiation and chemicals. Among all, thermal burn is predominant and may require specialized treatment in some patients. Although various biomarkers are reportedly used in thermal burn for understanding the pathophysiology of the injury, their limitations prompt for the search of suitable markers that can address the depth and severity of the burn. MicroRNAs (miRNAs) are conserved noncoding molecules that seem to be the promising marker due to their role in multiple pathways and participation in different physiological processes of the body. The present review highlights the role of miRNAs in the repair of the wound and their interaction with specific genes in response to burn stress. Key miR candidates include miR-21, miR-29a, miR-378a-5p, miR-100, miR-27b, miR-200c, miR-150, miR-499-5p, miR-92a, miR-194, and miR-146b, which are identified for their respective targets involved in wound repair. Furthermore, bioinformatics and computational tools were used to confirm the miRNAs and their specific targets. Gene and miRNA expression data sets were downloaded from Research Collaboratory for Structural Bioinformatics Protein Data Bank Database and RNAComposer, respectively, and docked by PatchDock. The possible implications of the identified miRNAs could be in understanding the mechanism of burn injury. These can also be studied with the available drugs being used for burn injury. Apart from that, new intended molecules may also be tested for their effect on these miRNAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.