In this paper, we address the problem of parameter estimation of a 2-D chirp model under the assumption that the errors are stationary. We extend the 2-D periodogram method for the sinusoidal model, to find initial values to use in any iterative procedure to compute the least squares estimators (LSEs) of the unknown parameters, to the 2-D chirp model. Next we propose an estimator, known as the approximate least squares estimator (ALSE), that is obtained by maximising a periodogram-type function and is observed to be asymptotically equivalent to the LSE. Moreover the asymptotic properties of these estimators are obtained under slightly mild conditions than those required for the LSEs. For the multiple component 2-D chirp model, we propose a sequential method of estimation of the ALSEs, that significantly reduces the computational difficulty involved in reckoning the LSEs and the ALSEs. We perform some simulation studies to see how the proposed method works and a data set has been analysed for illustrative purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.