Superconductivity has recently been observed in Sr-doped NdNiO2 films grown on SrTiO3. Whether it is caused by or related to the interface remains an open question. To address this issue, we use density functional theory calculation and charge transfer selfconsistent model to study the effects of polar discontinuity on the electronic and atomic reconstruction at the NdNiO2/SrTiO3 interface. We find that sharp interface with pure electronic reconstruction only is energetically unfavorable, and atomic reconstruction is unavoidable. We further propose a possible interface configuration that contain residual apical oxygen. These oxygen atoms lead to hybrids of dz 2 and dx 2 -y 2 states at the Fermi level, which weaken the single-band feature and may be detrimental to
Hafnia‐based compounds have considerable potential for use in nanoelectronics due to their compatibility with complementary metal–oxide–semiconductor devices and robust ferroelectricity at nanoscale sizes. However, the unexpected ferroelectricity in this class of compounds often remains elusive due to the polymorphic nature of hafnia, as well as the lack of suitable methods for the characterization of the mixed/complex phases in hafnia thin films. Herein, the preparation of centimeter‐scale, crack‐free, freestanding Hf0.5Zr0.5O2 (HZO) nanomembranes that are well suited for investigating the local crystallographic phases, orientations, and grain boundaries at both the microscopic and mesoscopic scales is reported. Atomic‐level imaging of the plan‐view crystallographic patterns shows that more than 80% of the grains are the ferroelectric orthorhombic phase, and that the mean equivalent diameter of these grains is about 12.1 nm, with values ranging from 4 to 50 nm. Moreover, the ferroelectric orthorhombic phase is stable in substrate‐free HZO membranes, indicating that strain from the substrate is not responsible for maintaining the polar phase. It is also demonstrated that HZO capacitors prepared on flexible substrates are highly uniform, stable, and robust. These freestanding membranes provide a viable platform for the exploration of HZO polymorphic films with complex structures and pave the way to flexible nanoelectronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.