In this paper, we consider the strategic asset allocation of an insurance company. This task can be seen as a special case of portfolio optimization. In the 1950s, Markowitz proposed to formulate portfolio optimization as a bicriteria optimization problem considering risk and return as objectives. However, recent developments in the field of insurance require four and more objectives to be considered, among them the so-called solvency ratio that stems from the Solvency II directive of the European Union issued in 2009. Moreover, the distance to the current portfolio plays an important role. While the literature on portfolio optimization with three objectives is already scarce, applications in the financial context with four and more objectives have not yet been solved so far by multi-objective approaches based on scalarizations. However, recent algorithmic improvements in the field of exact multi-objective methods allow the incorporation of many objectives and the generation of well-spread representations within few iterations. We describe the implementation of such an algorithm for a strategic asset allocation with four objective functions and demonstrate its usefulness for the practitioner. Our approach is in operative use in a German insurance company. Our partners report a significant improvement in their decision-making process since, due to the proper integration of the new objectives, the software proposes portfolios of much better quality than before within short running time.
In this paper we consider the strategic asset allocation of an insurance company. This task can be seen as a special case of portfolio optimization. In the 1950s, Markowitz proposed to formulate portfolio optimization as a bicriteria optimization problem considering risk and return as objectives. However, recent developments in the field of insurance require four and more objectives to be considered, among them the so-called solvency ratio that stems from the Solvency II directive of the European Union issued in 2009. Moreover, the distance to the current portfolio plays an important role. While literature on portfolio optimization with three objectives is already scarce, applications with four and more objectives have not yet been solved so far by multi-objective approaches based on scalarizations. However, recent algorithmic improvements in the field of exact multi-objective methods allow the incorporation of many objectives and the generation of well-spread representations within few iterations. We describe the implementation of such an algorithm for a strategic asset allocation with four objective functions and demonstrate its usefulness for the practitioner. Our approach is in operative use in a German insurance company. Our partners report a significant improvement in their decision making process since, due to the proper integration of the new objectives, the software proposes portfolios of much better quality than before within short running time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.