In recent years, sustainability and environmental effect of concrete became the main concern. Substituting cement with the other cementitious material without decreasing mechanical properties of a mixture could save energy, reduce greenhouse effect due to mining, calcination and limestone refining. Therefore, some industrial by-products such as fly ash, silica fume, and Ground Iron Blast Furnace Slag (GIBFS) would be used in this study to substitute cement and aggregate. This substitution would be applied on the porous concrete mixture to minimize the environmental effect. Slag performance will be optimized by trying out variations of fly ash, silica fume, and slag as cement substitution material in mortar mixture. The result is narrowed into two types of substitution. First, reviewed from the fly ash substitution effect on binder material, highest compressive strength 16.2 MPa was obtained from mixture composition 6% fly ash, 3% silica fume and 17% grinding granular blast-furnace slag. Second, reviewed from slag types as cement substitution and silica fume substitution, highest compressive strength 15.2 MPa was obtained from mortar specimens with air-cooled blast furnace slag. It composed with binder material 56% Portland composite cement, 15% fly ash, 3% silica fume and 26% air-cooled blast furnace slag. Considering the cement substitution, the latter mixture was chosen.
Fly Ash, Rice Husk Ash and Linear Low Density Polyethylene (LLDPE) Plastic Waste also contribute to environmental problems. Starting from the problem of CO2 emissions to ecosystem damage due to the accumulation of waste on the earth’s surface. Therefore, this study focuses on the use of Fly Ash, Rice husk ash and LLDPE Powder as a mixture of Alkaline-Activated Mortar. In this study, Fly Ash as a Pozzolanic Material mixed with Alkaline Activator Solution serves as a binder for Mortar. Rice husk ash is used as a substitute material for Fly ash while LLDPE powder functions as a substitute material for sand. The percentage of LLDPE powder used in the mortar mixture is from 0 to 15% of the total weight of the mixture. While the percentage of rice husk ash used in the mixture is 7%, Alkali Activator Solution 27% and Sand ranging from 24.5 to 39.5%. There are six variations of the mortar specimen (AAMP1, AAMP2, AAMP3, AAMP4, AAMP5, AAMP6). Initial setting time testing is done on binder mortar. The mortar compressive strength test was carried out at the age of 7 days after curing the oven at temperatures of 40°C and 60°C. From the test results obtained the highest compressive strength of 11.3 MPa on the AAMP6 test object with a curing temperature of 60°C where the percentage of LLDPE powder on the specimen is 15%. The core of the longest setting time is in the AAMP6 Alkaline-Activated Mortar binder variation, which is 180 minutes. The mortar compressive strength test was carried out at the age of 7 days after curing the oven at temperatures of 40°C and 60°C. From the test results obtained the highest compressive strength of 11.3 MPa on the AAMP6 test object with a curing temperature of 60°C where the percentage of LLDPE powder on the specimen is 15%. The core of the longest setting time is in the AAMP6 Alkaline-Activated Mortar binder variation, which is 180 minutes. The mortar compressive strength test was carried out at the age of 7 days after curing the oven at temperatures of 40°C and 60°C. From the test results obtained the highest compressive strength of 11.3 MPa on the AAMP6 test object with a curing temperature of 60°C where the percentage of LLDPE powder on the specimen is 15%. The core of the longest setting time is in the AAMP6 Alkaline-Activated Mortar binder variation, which is 180 minutes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.