This paper proposes a design of an efficient hospital nurse calling system which combines two types of indoor localization systems. The purpose of the first system is to locate patients while the second is to locate nurses equipped with their smart phones. The main goal of developing such system is to decrease the time taking for nurses to provide healthcare for patients. Patients' positioning system is RF based. Indeed, each patient is equipped with a wireless and battery-free call button. When the switch is pressed, a wireless telegram is sent to reference nodes that act like Wireless Sensor Networks (WSN). The positioning of patient is performed using trilateration method with the help of Received Signal Strength Indicator (RSSI) values. Hence, beacons will forward the received signal from patient’s call button to a central receiver module connected to a computer. A dedicated program has been developed to calculate the position of the call button and post it on an online database. On the other hand, the nurses’ localization system is WiFi-based. Nurses' positioning is done by determining the Time of Arrival (ToA) and the Angle of Arrival (AoA) between the mobile phone and the WiFi router. The mobile phone locations are posted to the online database as well. Our program performs a comparison between the nurses' and the patient's coordinates. The nearest nurse gets an alarm. As consequence, a patient gets care from the nearest available nurse in an efficient way and with less time. The proposed system is user-friendly and Internet of Things (IoT) based architecture integrating two heterogeneous localization systems seamlessly.
Proposed is an ultra-low-profile loop antenna backed by an electromagnetic bandgap (EBG) surface reflector, where the EBG surface can effectively exhibit the property of a perfect magnetic conductor (PMC) inside a deliberately designed bandwidth. It is shown that, assisted by the effective PMC bandwidth, while the proposed antenna is with a 0.07-λ spacing between the loops and the EBG reflector, its axial ratio (AR) and voltage standing wave ratio (VSWR) performances are significantly improved. Experimental measurements show that the prototype antenna has a 3 dB AR bandwidth of 17% with an input VSWR less than 1.6. The proposed approach can find a wide range of low-profile circularly polarised (CP) antenna applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.