Thermal therapy is widely known and electromagnetic (EM) energy, ultrasonic waves, and other thermal-conduction-based devices have been used as heating sources. In particular, advances in EM technology have paved the way for promising trends in thermotherapeutical applications such as oncology, physiotherapy, urology, cardiology, ophthalmology, and in other areas of medicine as well. This series of articles is generally written for oncologists, cancer researchers, medical students, biomedical researchers, clinicians, and others who have an interest in this topic. This article reviews key processes and developments in thermal therapy with emphasis on two techniques, namely, hyperthermia [including long-term low-temperature hyperthermia (40-41 degrees C for 6-72 hr), moderate-temperature hyperthermia (42-45 degrees C for 15-60 min), and thermal ablation, or high-temperature hyperthermia (> 50 degrees C for > 4-6 min)]. The article will also provide an overview of a wide range of possible mechanisms and biological effects of heat. This information will be discussed in light of what is known about the degree of temperature rise that is expected from various sources of energy. The review concludes with an evaluation of human exposure risk to EM energy or the corresponding heat, trends in equipment development, and future research directions.
Hyperthermia, the procedure of raising the temperature of a part of or the whole body above normal for a defined period of time, is applied alone or as an adjunctive with various established cancer treatment modalities such as radiotherapy and chemotherapy. Clinical hyperthermia falls into three broad categories, namely, (1) localized hyperthermia, (2) regional hyperthermia, and (3) whole-body hyperthermia (WBH). Because of the various problems associated with each type of treatment, different heating techniques have evolved. In this article, background information on the biological rationale and current status of technologies concerning heating equipment for the application of hyperthermia to human cancer treatment are provided. The results of combinations of other modalities such as radiotherapy or chemotherapy with hyperthermia as a new treatment strategy are summarized. The article concludes with a discussion of challenges and opportunities for the future.
Ablative treatments are gaining increasing attention as an alternative to standard surgical therapies, especially for patients with contraindication or those who refuse open surgery. Thermal ablation is used in clinical applications mainly for treating heart arrhythmias, benign prostate hyperplasia, and nonoperable liver tumors; there is also increasing application to other organ sites, including the kidney, lung, and brain. Potential benefits of thermal ablation include reduced morbidity and mortality in comparison with standard surgical resection and the ability to treat nonsurgical patients. The purpose of this review is to outline and discuss the engineering principles and biological responses by which thermal ablation techniques can provide elevation of temperature in organs within the human body. Because of the individual problems associated with each type of treatment, a wide range of ablation techniques have evolved including cryoablation as well as ultrasound, radiofrequency (RF), microwave, and laser ablation. Aspects of each ablation technique, including mechanisms of action, equipment required, selection of eligible patients, treatment techniques, and patient outcomes are presented, along with a discussion of limitations of the techniques and future research directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.