Magnetite nanoparticles conjugated to protein are developed in order to potentially serve as protein carriers into bovine sperm cells. The conjugate comprises iron oxide nanoparticles that are covalently bound to an anti-protein kinase C (PKC)alpha antibody. This conjugate can serve for cellular PKC localization and the inhibition of its function. The surface of the nanoparticle is first modified with (3-aminopropyl) thrimethoxysilane to form a self-assembled monolayer, and subsequently conjugated with the antibody through amidation between the carboxylic acid end groups on the antibody and the amine groups on the surface of the nanoparticles. The anti-PKCalpha localization is proven by fluorescent microscopy and iron staining. The activity of the anti-PKCalpha conjugated with the nanoparticle is tested by recognizing PKCalpha using the Western blot method.
A glass substrate, coated with a Parylene film, was coated with ZnO by three different methods: ultrasound, microwave, and microwave-plasma irradiation. These coating modes are simple, efficient, and environmentally friendly one-step processes. The structure of the coated products was characterized and compared using methods such as XRD, HR-SEM, EDS, RBS, and optical spectroscopy. Coating by ZnO nanoparticles was achieved for all three approaches. The products were found to differ in their particle sizes, coating thickness, and depth of penetration. All of the ZnO-Parylene-glass composites demonstrated a significant antibacterial activity against Escherichia coli (Gram negative) and Staphylococcus aureus (Gram positive) strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.