Biocompatibility is one of the mandatory requirements for the clinical use of biomaterials in orthopedics. It refers to the ability of a biomaterial to perform its function without eliciting toxic or injurious effects on biological systems but producing an appropriate host response in a specific case. Today, the biocompatibility concept includes not only bio-inertia, but also biofunctionality and biostability. High biocompatibility and functional properties are highly desirable for new biomaterials. The chemical, mechanical, structural properties of biomaterials, their interaction with biological environment or even the methodology of assessment can influence the biocompatibility. The biological evaluation of biomaterials includes a broad spectrum of
in vitro
and
in vivo
tests related to the cytocompatibility, genotoxicity, sensitization, irritation, acute and chronic toxicity, hemocompatibility, reproductive and developmental toxicitity, carcinogenicity, implantation and degradation as specified in different international standards. A brief review of the main assays used in the biocompatibility testing of orthopedic biomaterials is presented. In addition, their main biocompatibility issues are overviewed.
The general opinion in the literature is that these topics remain clearly understudied and underrated, with many unknown aspects and with controversial results in the respective areas of research. Based on the previous experience of our groups regarding such matters investigated separately, here we attempt a short overview upon their links. Thus, we summarize here the current state of knowledge regarding the connections between oxidative stress and: (a) orthopedic conditions; (b) COVID-19. We also present the reciprocal interferences among them. Oxidative stress is, of course, an interesting and continuously growing area, but what exactly is the impact of COVID-19 in orthopedic patients? In the current paper we also approached some theories on how oxidative stress, metabolism involvement, and even antibiotic resistance might be influenced by either orthopedic conditions or COVID-19. These manifestations could be relevant and of great interest in the context of this current global health threat; therefore, we summarize the current knowledge and/or the lack of sufficient evidence to support the interactions between these conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.