Inspired by ideas from NMR, we have developed Infrared Diffusion-Ordered Spectroscopy (IR-DOSY), which simultaneously characterizes molecular structure and size. We rely on the fact that the diffusion coefficient of a molecule is determined by its size through the Stokes-Einstein relation, and achieve sensitivity to the diffusion coefficient by creating a concentration gradient and tracking its equilibration in an IR-frequency resolved manner. Analogous to NMR-DOSY, a two-dimensional IR-DOSY spectrum has IR frequency along one axis and diffusion coefficient (or equivalently, size) along the other, so the chemical structure and the size of a compound are characterized simultaneously. In an IR-DOSY spectrum of a mixture, molecules with different sizes are nicely separated into distinct sets of IR peaks. Extending this idea to higher dimensions, we also perform 3D-IR-DOSY, in which we combine the conformation sensitivity of femtosecond multi-dimensional IR spectroscopy with size sensitivity.
The C−H olefination of substituted anisole derivatives by a Pd/S,O‐ligand catalyst is reported. The reaction proceeds under mild conditions with a broad range of substituted aryl ethers bearing both electron donating and withdrawing substituents at ortho, meta and para positions. Aryl ethers are used as limiting reagents and good yields and site selectivities are observed. The methodology is operationally simple and can be performed under aerobic conditions.
Conventional and two-dimensional infrared (2D-IR) spectroscopy are well suited to study amyloid aggregates, because the amide I mode is a sensitive probe of the aggregate structure. However, these methods are not so useful to study mixtures of aggregates and monomers, which generally have overlapping amide I spectra. Here, we show that IR-Diffusion-Ordered Spectroscopy (IR-DOSY) can disentangle the contributions of protein monomers and aggregates in FTIR and 2D-IR spectra by separating the spectral contributions based on molecular size. We rely on the fact that the diffusion coefficient of a molecule is determined by its size through the Stokes-Einstein relation, and achieve sensitivity to the diffusion coefficient by creating a concentration gradient inside an infrared sample cell and tracking its equilibration in an IR-frequency resolved manner. The protein-aggregate diffusion is too slow to be experimentally observable, so instead of tracking the arrival of molecular species diffusing into the initially empty region of the sample cell, we track the depletion of the more rapidly diffusing species as they leave the sample-filled region. In this way, we can still obtain the spectrum of very slowly diffusing species, although we cannot determine their diffusion coefficient. We first demonstrate this depletion method on a mixture of two small organic molecules, and then show how it can be used to separate the spectrum of a mixture of bovine-serum-albumin amyloids and monomers into its component spectra, both in the FTIR and 2D-IR case.
Inspired by ideas from NMR, we have developed Infrared Diffusion-Ordered Spectroscopy (IR-DOSY), which simultaneously characterizes molecular structure and size. We rely on the fact that the diffusion coefficient of a molecule is determined by its size through the Stokes-Einstein relation, and achieve sensitivity to the diffusion coefficient by creating a concentration gradient and tracking its equilibration in an IR-frequency resolved manner. Analogous to NMR-DOSY, a two-dimensional IR-DOSY spectrum has IR frequency along one axis and diffusion coefficient (or equivalently, size) along the other, so the chemical structure and the size of a compound are characterized simultaneously. In an IR-DOSY spectrum of a mixture, molecules with different sizes are nicely separated into distinct sets of IR peaks. Extending this idea to higher dimensions, we also perform 3D-IR-DOSY, in which we combine the conformation sensitivity of femtosecond multi-dimensional IR spectroscopy with size sensitivity.
Inspired by ideas from NMR, we have developed Infrared Diffusion-Ordered Spectroscopy (IR-DOSY), which simultaneously characterizes molecular structure and size. We rely on the fact that the diffusion coefficient of a molecule is determined by its size through the Stokes-Einstein relation, and achieve sensitivity to the diffusion coefficient by creating a concentration gradient and tracking its equilibration in an IR-frequency resolved manner. Analogous to NMR-DOSY, a two-dimensional IR-DOSY spectrum has IR frequency along one axis and diffusion coefficient (or equivalently, size) along the other, so the chemical structure and the size of a compound are characterized simultaneously. In an IR-DOSY spectrum of a mixture, molecules with different sizes are nicely separated into distinct sets of IR peaks. Extending this idea to higher dimensions, we also perform 3D-IR-DOSY, in which we combine the conformation sensitivity of femtosecond multi-dimensional IR spectroscopy with size sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.