Background
Stemming has long been used in data pre-processing to retrieve information by tracking affixed words back into their root. In an Indonesian setting, existing stemming methods have been observed, and the existing stemming methods are proven to result in high accuracy level. However, there are not many stemming methods for non-formal Indonesian text processing. This study introduces a new stemming method to solve problems in the non-formal Indonesian text data pre-processing. Furthermore, this study aims to improve the accuracy of text classifier models by strengthening stemming method. Using the Support Vector Machine algorithm, a text classifier model is developed, and its accuracy is checked. The experimental evaluation was done by testing 550 datasets in Indonesian using two different stemming methods.
Findings
The results show that using the proposed stemming method, the text classifier model has higher accuracy than the existing methods with a score of 0.85 and 0.73, respectively. These results indicate that the proposed stemming methods produces a classifier model with a small error rate, so it will be more accurate to predict a class of objects.
Conclusion
The existing Indonesian stemming methods are still oriented towards Indonesian formal sentences, therefore the method has limitations to be used in Indonesian non-formal sentences. This phenomenon underlies the suggestion of developing a corpus by normalizing Indonesian non-formal into formal to be used as a better stemming method. The impact of using the corpus as a stemming method is that it can improve the accuracy of the classifier model. In the future, the proposed corpus and stemming methods can be used for various purposes including text clustering, summarizing, detecting hate speech, and other text processing applications in Indonesian.
Data transaksi penjualan produk kartu perdana kuota internet dapat dijadikan sebagai bahan acuan untuk mengetahui seberapa besar tingkat penjualan produk yang telah dipasarkan oleh beberapa operator telekomunikasi seluler. Data tersebut tidak hanya dijadikan sebagai data arsip penyimpanan laporan penjualan perusahaan saja, tetapi dapat dianalisa dan dimanfaatkan menjadi sebuah informasi untuk membantu dalam melakukan pengembangan strategi pemasaran produk. Tujuan dari penelitian ini yaitu untuk menemukan aturan asosiasi kombinasi antar item produk operator telekomunikasi seluler mana saja yang paling laku terjual di wilayah penjualan Priangan Timur meliputi cluster Ciamis, Garut dan Tasikmalaya. Perhitungan Algoritma Apriori pada aturan asosiasi ini dihitung melalui tiga tahap iterasi pembentukan kandidat k-itemset. Hasil analisa aturan asosiasi yang terbentuk dari perhitungan algoritma apriori dengan menentukan nilai minimum support 35% dan nilai minimum confidence 80%, menghasilkan 9 aturan asosiasi final terbaik pada cluster Ciamis, 21 aturan asosiasi final untuk cluster Tasikmalaya dan 7 aturan asosiasi final untuk cluster Garut. Ketiga wilayah penjualan tersebut produk yang paling sering laku terjual dipasaran outlet adalah produk dari operator kartu kuota internet XL dengan Telkomsel dan produk Indosat dengan Telkomsel. Dengan demikian hasil yang diperoleh dapat digunakan untuk membantu pengambil keputusan dalam meningkatkan penjualan produk yang lebih baik
This study aims to determine the effect of variable size companies , growth companies and maturity against bond rating service sector listed in BEI 2015-2019 period. The population in this study is bond property and real estate companies listed in BEI 2015-2019 period totaling 7 companies. The sampling technique used was purposive sampling. Technical analysis of the data used is the logistic regression analysis with the help of SPSS 17 for windows. Results of the analysis showed that the partial significant effect on the bond ratings, the company's growth is not effect on the bond rating, the maturity is not effect on the bond rating
Keywords: rating bonds,size, growth, and maturity
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.