The electrochemical conversion of biomass‐based compounds to fuels and fuel precursors can aid the defossilization of the transportation sector. Herein, the electrohydrodimerization of 5‐hydroxymethylfurfural (HMF) to the fuel precursor 5,5’‐bis(hydroxymethyl)hydrofuroin (BHH) was investigated on different carbon electrodes. Compared to boron‐doped diamond (BDD) electrodes, on glassy carbon (GC) electrodes a less negative HMF reduction onset potential and a switch in product selectivity from BHH to the electrocatalytic hydrogenation product 2,5‐di(hydroxymethyl)furan (DHMF) with increasing overpotential was found. On BDD, the electrohydrodimerization was the dominant process independent of the applied potential. An increase in the initial HMF concentration led to suppression of the competing hydrogen evolution reaction and DHMF formation, resulting in higher BHH faradaic efficiencies. In contrast, BHH selectivity decreased with higher initial HMF concentration, which was attributed to increased electrochemically induced HMF degradation. Finally, it was demonstrated that even a simple graphite foil can function as an active HMF electroreduction catalyst.
A conductive SnO2 layer and small quantities of IrO2 surface cocatalyst enhance the catalytic efficiency of nanoporous Fe2O3 electrodes in the oxygen evolution reaction at neutral pH. Anodic alumina templates are therefore coated with thin layers of SnO2, Fe2O3, and IrO2 by atomic layer deposition. In the first step, the Fe2O3 electrode is modified with a conductive SnO2 layer and submitted to different postdeposition thermal treatments in order to maximize its catalytic performance. The combination of steady‐state electrolysis, electrochemical impedance spectroscopy, X‐ray crystallography, and X‐ray photoelectron spectroscopy demonstrates that catalytic turnover and e− extraction are most efficient if both layers are amorphous in nature. In the second step, small quantities of IrO2 with extremely low iridium loading of 7.5 µg cm−2 are coated on the electrode surface. These electrodes reveal favorable long‐term stability over at least 15 h and achieve maximized steady‐state current densities of 0.57 ± 0.05 mA cm−2 at η = 0.38 V and pH 7 (1.36 ± 0.10 mA cm−2 at η = 0.48 V) in dark conditions. This architecture enables charge carrier separation and reduces the photoelectrochemical water oxidation onset by 300 mV with respect to pure Fe2O3 electrodes of identical geometry.
Rationale:The development of an interface to introduce liquid sample streams to direct analysis in real time mass spectrometry (DART-MS) is of great interest for coupling various analytical techniques, using non-volatile salts, with MS. Therefore, we devised an enclosed ionization interface and a sample introduction system for the versatile analysis of liquid samples with DART-MS. Methods: The sample introduction system consists of a nebulizer, a spray chamber and a transfer line, while the confined ionization interface is created by implementing a cross-shaped housing between the ion source and the MS inlet. Methodical studies of the effects of various setup parameters on signal intensity and peak shape were conducted, while its diverse applicability was demonstrated by coupling with high-performance liquid chromatography (HPLC) for the analysis of alcohols, organic acids and furanic compounds. Results: The confinement of the ionization interface results in a robust setup design with a well-defined ionization region for focusing of the sprayed sample mist. Thereby, an increase in analyte signal intensity by three orders of magnitude and improved signal stability and reproducibility were obtained in comparison to a similar open ionization interface configuration. Additionally, the successful quantification of alcohols could be demonstrated as well as the compatibility of the setup with HPLC gradient elution. Conclusions: A versatile setup design for the analysis of liquid sample streams with DART-MS was devised for monitoring reactions or hyphenating analytics with MS. It minimizes This article is protected by copyright. All rights reserved.interferences from the laboratory surrounding as well as allows for safe handling of hazardous and toxic chemicals, which renders it suitable for a broad range of applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.