The trend to view many foods not only as sustenance but also as medicine, so-called functional foods, is increasing. Phenolics are the most widespread dietary antioxidants, and among these, chlorogenic acid (CGA) accumulates to high levels in some crop plants. CGA acts as an antioxidant in plants and protects against degenerative, age-related diseases in animals when supplied in their diet. cDNA clones encoding the enzyme that synthesizes CGA, hydroxycinnamoyl-CoA quinate: hydroxycinnamoyl transferase (HQT), were characterized from tomato and tobacco. Gene silencing proved HQT to be the principal route for accumulation of CGA in solanaceous species. Overexpression of HQT in tomato caused plants to accumulate higher levels of CGA, with no side-effects on the levels of other soluble phenolics, and to show improved antioxidant capacity and resistance to infection by a bacterial pathogen. Tomatoes with elevated CGA levels could be used in foods with specific benefits for human health.
SummaryPlant polyphenolics exhibit a broad spectrum of health-promoting effects when consumed as part of the diet, and there is considerable interest in enhancing the levels of these bioactive molecules in plants used as foods. AtMYB12 was originally identified as a flavonol-specific transcriptional activator in Arabidopsis thaliana, and this has been confirmed by ectopic expression in tobacco. AtMYB12 is able to induce the expression of additional target genes in tobacco, leading to the accumulation of very high levels of flavonols. When expressed in a tissue-specific manner in tomato, AtMYB12 activates the caffeoyl quinic acid biosynthetic pathway, in addition to the flavonol biosynthetic pathway, an activity which probably mirrors that of the orthologous MYB12-like protein in tomato. As a result of its broad specificity for transcriptional activation in tomato, AtMYB12 can be used to produce fruit with extremely high levels of multiple polyphenolic antioxidants. Our data indicate that transcription factors may have different specificities for target genes in different plants, which is of significance when designing strategies to improve metabolite accumulation and the anti-oxidant capacity of foods.
TGA2.2 is a major component of either complex, asshown by supershift analysis and Western blot analysis of DNA affinity-purified SARP. Minor amounts of a protein immunologically related to TGA2.1 were detected, whereas TGA1a was not detectable. Overexpression of either TGA2.2 or a dominant negative TGA2.2 mutant affected both SA and auxin (2,4D) inducibility of various target promoters encoding as-1-like elements, albeit to different extents. This indicates that TGA2.2 is a component of the enhancosome assembling on these target promoters, both under elevated SA and 2,4D concentrations. However, the effect of altered TGA2.2 levels on gene expression was more pronounced upon SA treatment than upon 2,4D treatment.
Legionella pneumophila, the causal agent of Legionnaires' disease, is an intracellular parasite and invades and proliferates within different eukaryotic cells, including human alveolar macrophages. After several 100-fold multiplication within host cells, the pathogens are released for new invasion by induction of apoptosis or necrosis. Here we report that L. pneumophila produces a glucosyltransferase, which selectively modifies an Ϸ50-kDa mammalian protein by using UDP-glucose as a cosubstrate. MS analysis identified the protein substrate as the mammalian elongation factor (EF)1A. Legionella glucosyltransferase modifies its eukaryotic protein substrate at serine-53, which is located in the GTPase domain of the EF. Glucosylation of EF1A results in inhibition of eukaryotic protein synthesis and death of target cells. Our findings show a mode of inhibition of protein synthesis by microbial pathogens and offer a perspective for understanding of the host-pathogen interaction of L. pneumophila.host-pathogen interaction ͉ coralent modification ͉ protein synthesis inhibition
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.