Nephronophthisis (NPH) is a genetically heterogenous kidney disease and represents the most common genetic cause for end-stage renal disease in children. It is caused by the mutation of genes encoding for the nephrocystin proteins (NPHPs) which localize to primary cilia or centrosomes, classifying this disease as a 'ciliopathy'. Recently, it has been shown that NPHP4 acts as a potent negative regulator of mammalian Hippo signalling by interacting with the Lats protein kinase and controlling the phosphorylation of the oncogenic transcriptional activator TAZ. Here, we demonstrate that NPHP9, another NPH family member, also controls TAZ activity by a distinct mechanism. NPHP9, which is also called NEK8, directly interacted with TAZ and induced nuclear translocation of the TAZ/NPHP9 protein complex. Binding of NPHP9 to TAZ was enhanced in a TAZ mutant that lost its ability to bind 14-3-3, suggesting that 14-3-3 and NPHP9 may compete for TAZ binding, with 14-3-3 favouring cytoplasmic retention and NPHP9 mediating nuclear delivery. Consistently, co-expression of NPHP4, which inhibits TAZ phosphorylation at the 14-3-3 binding site through the inhibition of Lats kinase activity, induced efficient nuclear delivery of the TAZ/NPHP9 protein pair. Consistent with a role for TAZ in controlling proliferation and tumorigenesis, the downregulation of NPHP9 inhibited the TAZ-dependent proliferation of hippo-responsive normal epithelial and also breast cancer cells. As NPHP9 has been shown to be upregulated in breast cancer, these data do not only support a critical role for TAZ/hippo signalling in the pathogenesis of NPH but may also imply a possible role for NPHP9 in TAZ-mediated tumorigenesis.
The differentially regulated genes in our study add evidence for the relevance of inflammation, neuronal/glial development, phosphatidylinositol second-messenger pathway and ion channels in the mode of action of lithium.
Our preliminary results demonstrate MPH treatment differences in ADHD patients and healthy controls in a peripheral primary cell model. Our results need to be replicated in larger samples and also using patient-derived neuronal cell models to validate the contribution of those genes to the pathophysiology of ADHD and mode of action of MPH.
We here show that chronic lithium treatment of LCLs leads to decreased expression of the clock gene DBP, rendering DBP a lithium-regulated gene. We could confirm the role of the circadian clock as well in lithium mode of action as in the pathomechanisms of BD although future studies with a greater number of participants and cell lines are needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.