Summary Understanding how neural information is processed in physiological and pathological states would benefit from precise detection, localization and quantification of the activity of all neurons across the entire brain, which has not to date been achieved in the mammalian brain. We introduce a pipeline for high speed acquisition of brain activity at cellular resolution through profiling immediate early gene expression using immunostaining and light-sheet fluorescence imaging, followed by automated mapping and analysis of activity by an open-source software program we term ClearMap. We validate the pipeline first by analysis of brain regions activated in response to Haloperidol. Next, we report new cortical regions downstream of whisker-evoked sensory processing during active exploration. Lastly, we combine activity mapping with axon tracing to uncover new brain regions differentially activated during parenting behavior. This pipeline is widely applicable to different experimental paradigms, including animal species for which transgenic activity reporters are not readily available.
iPSC-derived microglia offer a powerful tool to study microglial homeostasis and diseaseassociated inflammatory responses. Yet, microglia are highly sensitive to their environment, exhibiting transcriptomic deficiencies when kept in isolation from the brain. Furthermore, species-specific genetic variations demonstrate that rodent microglia fail to fully recapitulate the human condition. To address this, we developed an approach to study human microglia within a surrogate brain environment. Transplantation of iPSC-derived hematopoieticprogenitors into the postnatal brain of humanized, immune-deficient mice results in contextdependent differentiation into microglia and other CNS macrophages, acquisition of an ex vivo human microglial gene signature, and responsiveness to both acute and chronic insults. Most notably, transplanted microglia exhibit robust transcriptional responses to A-plaques that only partially overlap with that of murine microglia, revealing new, human-specific Aresponsive genes. We therefore propose that this chimeric model can provide a powerful new system to examine the in vivo function of patient-derived and genetically-modified microglia.
Considerable progress has been made in converting human pluripotent stem cells (hPSCs) into functional neurons. However, the protracted timing of human neuron specification and functional maturation remains a key challenge that hampers the routine application of hPSC-derived lineages in disease modeling and regenerative medicine. Using a combinatorial small-molecule screen, we previously identified conditions for the rapid differentiation of hPSCs into peripheral sensory neurons. Here we generalize the approach to central nervous system (CNS) fates by developing a small-molecule approach for accelerated induction of early-born cortical neurons. Combinatorial application of 6 pathway inhibitors induces post-mitotic cortical neurons with functional electrophysiological properties by day 16 of differentiation, in the absence of glial cell co-culture. The resulting neurons, transplanted at 8 days of differentiation into the postnatal mouse cortex, are functional and establish long-distance projections, as shown using iDISCO whole brain imaging. Accelerated differentiation into cortical neuron fates should facilitate hPSC-based strategies for disease modeling and cell therapy in CNS disorders.
Mounting an effective immune response against cancer requires the activation of innate and adaptive immune cells. Metastatic melanoma is the most aggressive form of skin cancer. While immunotherapies have shown a remarkable success in melanoma treatment, patients develop resistance by mechanisms that include the establishment of an immune suppressive tumor microenvironment. Thus, understanding how metastatic melanoma cells suppress the immune system is vital to develop effective immunotherapies against this disease. In this study, we find that macrophages (MOs) and dendritic cells (DCs) are suppressed in metastatic melanoma and that the Ig-CDR-based peptide C36L1 is able to restore MOs and DCs’ antitumorigenic and immunogenic functions and to inhibit metastatic growth in lungs. Specifically, C36L1 treatment is able to repolarize M2-like immunosuppressive MOs into M1-like antitumorigenic MOs, and increase the number of immunogenic DCs, and activated cytotoxic T cells, while reducing the number of regulatory T cells and monocytic myeloid-derived suppressor cells in metastatic lungs. Mechanistically, we find that C36L1 directly binds to the MIF receptor CD74 which is expressed on MOs and DCs, disturbing CD74 structural dynamics and inhibiting MIF signaling on these cells. Interfering with MIF–CD74 signaling on MOs and DCs leads to a decrease in the expression of immunosuppressive factors from MOs and an increase in the capacity of DCs to activate cytotoxic T cells. Our findings suggest that interfering with MIF–CD74 immunosuppressive signaling in MOs and DCs, using peptide-based immunotherapy can restore the antitumor immune response in metastatic melanoma. Our study provides the rationale for further development of peptide-based therapies to restore the antitumor immune response in metastatic melanoma.
Immunotherapy using immune checkpoint inhibitors (ICIs) induces durable responses in many metastatic cancers. Metastatic uveal melanoma (mUM), typically occurring in the liver, is one of the most refractory tumours to ICIs and has dismal outcomes. Monosomy 3 (M3), polysomy 8q, and BAP1 loss in primary uveal melanoma (pUM) are associated with poor prognoses. The presence of tumour‐infiltrating lymphocytes (TILs) within pUM and surrounding mUM – and some evidence of clinical responses to adoptive TIL transfer – strongly suggests that UMs are indeed immunogenic despite their low mutational burden. The mechanisms that suppress TILs in pUM and mUM are unknown. We show that BAP1 loss is correlated with upregulation of several genes associated with suppressive immune responses, some of which build an immune suppressive axis, including HLA‐DR, CD38, and CD74. Further, single‐cell analysis of pUM by mass cytometry confirmed the expression of these and other markers revealing important functions of infiltrating immune cells in UM, most being regulatory CD8+ T lymphocytes and tumour‐associated macrophages (TAMs). Transcriptomic analysis of hepatic mUM revealed similar immune profiles to pUM with BAP1 loss, including the expression of IDO1. At the protein level, we observed TAMs and TILs entrapped within peritumoural fibrotic areas surrounding mUM, with increased expression of IDO1, PD‐L1, and β‐catenin (CTNNB1), suggesting tumour‐driven immune exclusion and hence the immunotherapy resistance. These findings aid the understanding of how the immune response is organised in BAP1 − mUM, which will further enable functional validation of detected biomarkers and the development of focused immunotherapeutic approaches. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.