Early detection of Alzheimer’s disease (AD) is crucial to preserve cognitive functions and provide the opportunity for patients to enter clinical trials. In recent years, some studies have reported that features related to the signal and texture of MRI images can be an effective biomarker of AD. To test these claims, a study was conducted using T2 maps, a sequence not previously studied, of 40 patients with mild cognitive impairment (MCI) from the Alzheimer’s Disease Neuroimaging Initiative database, who either progressed to AD (18) or remained stable (22). From these maps, the mean value and absolute difference of 37 signal and texture imaging features for 40 contralateral pairs of regions were measured. We used seven machine learning methods to analyze whether, by adding these imaging features to the neuropsychological studies currently used for diagnosis, we could more accurately identify patients who will progress to AD. The predictive models improved with the addition of signal and texture features. Additionally, features related to the signal and texture of the images were much more relevant than volumetric ones. Our results suggest that contralateral signal and texture features should be further investigated as potential biomarkers for the prediction of AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.