The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay -these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions.Experiments carried out over the past half century have revealed that neutrinos are found in three states, or flavors, and can transform from one flavor into another. These results indicate that each neutrino flavor state is a mixture of three different nonzero mass states, and to date offer the most compelling evidence for physics beyond the Standard Model. In a single experiment, LBNE will enable a broad exploration of the three-flavor model of neutrino physics with unprecedented detail. Chief among its potential discoveries is that of matter-antimatter asymmetries (through the mechanism of charge-parity violation) in neutrino flavor mixing -a step toward unraveling the mystery of matter generation in the early Universe. Independently, determination of the unknown neutrino mass ordering and precise measurement of neutrino mixing parameters by LBNE may reveal new fundamental symmetries of Nature.Grand Unified Theories, which attempt to describe the unification of the known forces, predict rates for proton decay that cover a range directly accessible with the next generation of large underground detectors such as LBNE's. The experiment's sensitivity to key proton decay channels will offer unique opportunities for the ground-breaking discovery of this phenomenon.Neutrinos emitted in the first few seconds of a core-collapse supernova carry with them the potential for great insight into the evolution of the Universe. LBNE's capability to collect and analyze this high-statistics neutrino signal from a supernova within our galaxy would provide a rare opportunity to peer inside a newly-formed neutron star and potentially witness the birth of a black hole.To achieve its goals, LBNE is conceived around three central components: (1) a new, highintensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a fine-grained near neutrino detector installed just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is ∼1,300 km from the neutrino source at Fermilab -a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions.With its exceptional combi...
The discovery of the enzymatic formation of lactic acid from methylglyoxal dates back to 1913 and was believed to be associated with one enzyme termed ketonaldehydemutase or glyoxalase, the latter designation prevailed. However, in 1951 it was shown that two enzymes were needed and that glutathione was the required catalytic co-factor. The concept of a metabolic pathway defined by two enzymes emerged at this time. Its association to detoxification and anti-glycation defence are its presently accepted roles, since methylglyoxal exerts irreversible effects on protein structure and function, associated with misfolding. This functional defence role has been the rationale behind the possible use of the glyoxalase pathway as a therapeutic target, since its inhibition might lead to an increased methylglyoxal concentration and cellular damage. However, metabolic pathway analysis showed that glyoxalase effects on methylglyoxal concentration are likely to be negligible and several organisms, from mammals to yeast and protozoan parasites, show no phenotype in the absence of one or both glyoxalase enzymes. The aim of the present review is to show the evolution of thought regarding the glyoxalase pathway since its discovery 100 years ago, the current knowledge on the glyoxalase enzymes and their recognized role in the control of glycation processes.
The mechanisms driving pathological beta-amyloid (Ab) generation in late-onset Alzheimer's disease (AD) are unclear. Two late-onset AD risk factors, Bin1 and CD2AP, are regulators of endocytic trafficking, but it is unclear how their endocytic function regulates Ab generation in neurons. We identify a novel neuron-specific polarisation of Ab generation controlled by Bin1 and CD2AP. We discover that Bin1 and CD2AP control Ab generation in axonal and dendritic early endosomes, respectively. Both Bin1 loss of function and CD2AP loss of function raise Ab generation by increasing APP and BACE1 convergence in early endosomes, however via distinct sorting events. When Bin1 levels are reduced, BACE1 is trapped in tubules of early endosomes and fails to recycle in axons. When CD2AP levels are reduced, APP is trapped at the limiting membrane of early endosomes and fails to be sorted for degradation in dendrites. Hence, Bin1 and CD2AP keep APP and BACE1 apart in early endosomes by distinct mechanisms in axon and dendrites. Individuals carrying variants of either factor would slowly accumulate Ab in neurons increasing the risk for late-onset AD.
Methylglyoxal is the most important intracellular glycation agent, formed nonenzymatically from triose phosphates during glycolysis in eukaryotic cells. Methylglyoxal‐derived advanced glycation end‐products are involved in neurodegenerative disorders (Alzheimer's, Parkinson's and familial amyloidotic polyneurophathy) and in the clinical complications of diabetes. Research models for investigating protein glycation and its relationship to methylglyoxal metabolism are required to understand this process, its implications in cell biochemistry and their role in human diseases. We investigated methylglyoxal metabolism and protein glycation in Saccharomyces cerevisiae. Using a specific antibody against argpyrimidine, a marker of protein glycation by methylglyoxal, we found that yeast cells growing on d‐glucose (100 mm) present several glycated proteins at the stationary phase of growth. Intracellular methylglyoxal concentration, determined by a specific HPLC based assay, is directly related to argpyrimidine formation. Moreover, exposing nongrowing yeast cells to a higher d‐glucose concentration (250 mm) increases methylglyoxal formation rate and argpyrimidine modified proteins appear within 1 h. A kinetic model of methylglyoxal metabolism in yeast, comprising its nonenzymatic formation and enzymatic catabolism by the glutathione dependent glyoxalase pathway and aldose reductase, was used to probe the role of each system parameter on methylglyoxal steady‐state concentration. Sensitivity analysis of methylglyoxal metabolism and studies with gene deletion mutant yeast strains showed that the glyoxalase pathway and aldose reductase are equally important for preventing protein glycation in Saccharomyces cerevisiae.
BackgroundInsulin is a hormone that regulates blood glucose homeostasis and is a central protein in a medical condition termed insulin injection amyloidosis. It is intimately associated with glycaemia and is vulnerable to glycation by glucose and other highly reactive carbonyls like methylglyoxal, especially in diabetic conditions. Protein glycation is involved in structure and stability changes that impair protein functionality, and is associated with several human diseases, such as diabetes and neurodegenerative diseases like Alzheimer's disease, Parkinson's disease and Familiar Amyloidotic Polyneuropathy. In the present work, methylglyoxal was investigated for their effects on the structure, stability and fibril formation of insulin.ResultsMethylglyoxal was found to induce the formation of insulin native-like aggregates and reduce protein fibrillation by blocking the formation of the seeding nuclei. Equilibrium-unfolding experiments using chaotropic agents showed that glycated insulin has a small conformational stability and a weaker dependence on denaturant concentration (smaller m-value). Our observations suggest that methylglyoxal modification of insulin leads to a less compact and less stable structure that may be associated to an increased protein dynamics.ConclusionsWe propose that higher dynamics in glycated insulin could prevent the formation of the rigid cross-β core structure found in amyloid fibrils, thereby contributing to the reduction in the ability to form fibrils and to the population of different aggregation pathways like the formation of native-like aggregates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.