Assessing a full set of mechanical properties is a rather complicate task in the case of foams, especially if material models must be calibrated with these results. Many issues, for example anisotropy and heterogeneity, influence the mechanical behavior. This article shows through experimental analyses how the microstructure affects different experimental setups and it also quantifies the degree of anisotropy of a poly(vinyl chloride) foam. Monotonic and cyclic experimental tests were carried out using standard compression specimens and non-standard tensile specimens. Results are complemented and compared with the aid of a digital image correlation technique and scanning electron microscopy analyses. Mechanical properties (e.g., elastic and plastic Poisson's ratios) are evaluated for compression and tensile tests, for two different material directions (normal and in-plane). The material is found to be transversely isotropic. Differences in the results of the mechanical properties can be as high as 100%, or even more depending on the technique used and the loading direction. Also, the experimental analyses show how the material's microstructure behavior, like the evolution of the herein identified ''yield fronts'' and a ''spring back'' phenomenon, can influence the phenomenological response and the failure mechanisms as well as the hardening curves. POLYM. ENG.
The lining design of steel ladles has a major impact on the performance of these metallurgical vessels. For instance, their better thermal performance is mainly related to the refractory materials applied in the lining, which requires continuous quality and cost optimizations. In this study, different refractory linings were investigated in order to understand their effect on the thermal performance of the steel ladle, that is, on the control of the average steel and shell temperatures, effect on the amount of stored energy in the refractory lining and on the cycling energy consumption. The influence of distinct configurations of insulating materials (position, thickness, and types) on those parameters was investigated by heat transfer simulations using numerical tools. The results pointed out the insulating materials efficiency on reducing the shell temperatures and increasing the average steel temperature. However, the benefits of applying the insulator with thicknesses over 21 mm or applying it at the bottom are less significant. The application of the foam insulator at unusual positions showed promising results, such as between the safety and working layer and at the hot face.The former position enhanced the performance during pre-heating whereas the latter significantly increased the steel temperature (34°C). Consequently, the study pointed out new designs for the project of steel ladle linings, improving their efficiency, targeting solutions for saving energy, and reducing the environmental impacts. K E Y W O R D S saving energy, steel ladle, refractory lining design, insulating layer, heat transfer modeling 114 | CAMPOS et Al. How to cite this article: Campos MGG, Dos Santos MF, Moreira MH, Angélico RA, Sako EY, Pandolfelli VC. Holistic view of the insulating layer on the thermal efficiency of a steel ladle lining. Int J Ceramic Eng Sci.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.