Resumo-Este artigo apresenta e discute importantes ferramentas da geoestatística utilizadas para a geração de mapas de ambiente de rádio (REM-Radio Environment Maps) em sistemas de comunicações sem fio. A partir de um processo de amostragem espacial, o método Kriging Ordinário (KO) foi utilizado para gerar o REM. Resultados de simulação mostram a influência de parâmetros relacionados à modelagem do ambiente de rádio na precisão de geração do REM. Sobre esta perspectiva, são apontados desafios e limitações relacionados à geração e uso do REM em aplicações de sistemas de comunicações sem fio.
Radio environment map (REM) can provide important information for designing and optimizing the performance of wireless communication networks. However, the location uncertainty related to the measurements used to build the REM can considerably deteriorate the accuracy of such map. This paper addresses this problem by proposing a modified approach of a classical geostatistical prediction tool, named Kriging method, which incorporates the location uncertainty and is able to improve the REM accuracy without adding significant complexity. Finally, we also show through simulation results that the average path loss and covariance parameter estimation play an important role and should be considered when the location errors occur in the wireless communication systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.