Purpose: The aim of the present study was to investigate the influence of futsal match-related fatigue on running performance, neuromuscular variables, and finishing kick speed and accuracy.Methods: Ten professional futsal players participated in the study (age: 22.2 ± 2.5 years) and initially performed an incremental protocol to determine maximum oxygen uptake (trueV˙O2max: 50.6 ± 4.9 mL.kg−1.min−1). Next, simulated games were performed, in four periods of 10 min during which heart rate and blood lactate concentration were monitored. The entire games were video recorded for subsequent automatic tracking. Before and immediately after the simulated game, neuromuscular function was measured by maximal isometric force of knee extension, voluntary activation using twitch interpolation technique, and electromyographic activity. Before, at half time, and immediately after the simulated game, the athletes also performed a set of finishing kicks for ball speed and accuracy measurements.Results: Total distance covered (1st half: 1986.6 ± 74.4 m; 2nd half: 1856.0 ± 129.7 m, P = 0.00) and distance covered per minute (1st half: 103.2 ± 4.4 m.min−1; 2nd half: 96.4 ± 7.5 m.min−1, P = 0.00) demonstrated significant declines during the simulated game, as well as maximal isometric force of knee extension (Before: 840.2 ± 66.2 N; After: 751.6 ± 114.3 N, P = 0.04) and voluntary activation (Before: 85.9 ± 7.5%; After: 74.1 ± 12.3%, P = 0.04), however ball speed and accuracy during the finishing kicks were not significantly affected.Conclusion: Therefore, we conclude that despite the decline in running performance and neuromuscular variables presenting an important manifestation of central fatigue, this condition apparently does not affect the speed and accuracy of finishing kicks.
Taurine can affect the energy system metabolism, specifically the lipid metabolism, since an increase in lipid oxidation may promote carbohydrate savings. We hypothesized that taurine supplementation associated with high-intensity exercise could increase levels of lipolysis, benefiting swimmer performance. Nine male competitive swimmers performed two 400-m front crawl maximal efforts with a 1-week washout, and the athletes received 6 g of taurine (TAU) or placebo (PLA) supplementation 120 min before performing the effort. Oxygen consumption and the contribution of the energy systems were analyzed post effort using a Quark CPET gas analyzer. Blood samples were collected before, and 5 min post the effort for taurine and glycerol analysis. Immediately before and 3, 5, and 7 min post the effort, blood samples from the earlobe were collected to determine lactate levels. An increase of 159% was observed in taurine plasma levels 120 min post ingestion. Glycerol levels were higher in both groups post effort; however, the TAU condition promoted an 8% higher increase than the PLA. No changes were observed in swimmer performance or lactate levels; however, the percentage change in lactate levels (∆[La]) was different (TAU: 9.36 ± 2.78 mmol L; PLA: 11.52 ± 2.19 mmol L, p = 0.04). Acute taurine supplementation 120 min before performing a maximal effort did not improve swimmer performance; however, it increased glycerol plasma levels and reduced both the ∆[La] and lactic anaerobic system contribution.
The aims of the present study were to verify the contributions of the energy systems during repeated sprints with a short recovery time and the associations of the time- and power-performance of repeated sprints with energetic contributions and aerobic and anaerobic variables. 13 healthy men performed the running-based anaerobic sprint test (RAST) followed by an incremental protocol for lactate minimum intensity determination. During the RAST, the net energy system was estimated using the oxygen consumption and the blood lactate responses. The relative contributions of oxidative phosphorylation, glycolytic, and phosphagen pathways were 38, 34, and 28%, respectively. The contribution of the oxidative pathway increased significantly during RAST especially from the third sprint, at the same time that power- and time-performances decreases significantly. The phosphagen pathway was associated with power-performance (peak power=432±107 W, r=0.65; mean power=325±80 W, r=0.65; minimum power=241±77 W, r=0.57; force impulse=1 846±478 N·s, r=0.74; <0.05). The time-performance (total time=37.9±2.5 s; best time=5.7±0.4 s; mean time=6.3±0.4 s; worst time=7.0±0.6 s) was significantly correlated with the oxidative phosphorylation pathway (0.57
Total anaerobic contribution (TAn) can be assessed by accumulated oxygen deficit, and through sum of glycolytic and phosphagen contribution which enable the evaluation of TAn without influences on mechanical parameters. However, little is known about the difference of TAn within swimming distances. Therefore, the objectives of the present study were to determine and compare the TAn in different performances using the backward extrapolation technique and amount of lactate accumulated during exercise, and relate it with swimming performance. Fourteen competitive swimmers performed five maximal front crawl swims of 50, 100, 200, 400, and 800 m. The total phosphagen (AnAl) and glycolytic (AnLa) contributions were assumed as the fast component of post-exercise oxygen consumption (EPOCFAST) and amount of blood lactate accumulated during exercise, respectively. TAn was the sum of AnAl and AnLa. Significantly lower values of AnLa were observed in the 800 m (p < 0.01) than other distances. For AnAl, the 50 m performance presented the lowest values, followed by 100 and 800 m (p < 0.01). The highest values of AnAl were observed in the 200 and 400 m (p > 0.13). The TAn was significantly higher in the 200 and 400 m performances than observed at 50 and 800 m (p < 0.01). Anaerobic contributions were correlated with 50, 100, 200, and 400 m performances (p < 0.01). The AnAl contribution was not correlated with 400 m performance. Anaerobic parameters were not correlated with 800 m performance. In conclusion, the highest values of anaerobic contribution were observed in the 200 and 400 m distances. Moreover, TAn is important to performances below 400 m, and may be used in training routines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.