There are hundreds of companies worldwide claiming to produce "graphene," showing a large variation in its properties. A systematic and reliable protocol is developed to test graphene quality using electron microscopy, atomic force microscopy, Raman spectroscopy, elemental analysis, X-ray photoelectron spectrometry, and scanning and transmission electron microscopy, which is used to study graphene from 60 producers. The statistical nature of the liquid-phase exfoliation of graphite is established. It is shown that the current classification of graphene flakes used in the market is erroneous. A new classification is proposed in terms of distribution functions for number of layers and flake size. It is shown unequivocally that the quality of the graphene produced in the world today is rather poor, not optimal for most applications, and most companies are producing graphite microplatelets. This is possibly the main reason for the slow development of graphene applications, which usually require a customized solution in terms of graphene properties. It is argued that the creation of stringent standards for graphene characterization and production, taking into account both the physical properties, as well as the requirements from the particular application, is the only way forward to create a healthy and reliable worldwide graphene market.
The development of materials and strategies that can influence stem cell attachment, proliferation, and differentiation towards osteoblasts is of high interest to promote faster healing and reconstructions of large bone defects. Graphene and its derivatives (graphene oxide and reduced graphene oxide) have received increasing attention for biomedical applications as they present remarkable properties such as high surface area, high mechanical strength, and ease of functionalization. These biocompatible carbon-based materials can induce and sustain stem cell growth and differentiation into various lineages. Furthermore, graphene has the ability to promote and enhance osteogenic differentiation making it an interesting material for bone regeneration research. This paper will review the important advances in the ability of graphene and its related forms to induce stem cells differentiation into osteogenic lineages.
In this work xanthan chains were crosslinked by esterification reaction at 165 °C either in the absence or in the presence of citric acid. Higher crosslinking density was obtained using citric acid, as evidenced by its lower swelling degree. Tensiometry, a very precise and sensitive technique, was applied to study swelling rates and diffusion mechanisms of water, which was initially quasi-Fickian, controlled by wicking properties, changing to Fickian or Anomalous, depending on hydrogel composition. Hydrogels swelling degree increased at high pH values, due to electrostatic repulsion and ester linkages rupture. Equilibrium swelling degree was affected by salts, depending on gel composition and kind of salt. Effects could be explained by interaction between ions and polymeric chains, EPA/EPD ability of water or osmotic gradient.
We demonstrate the direct dry transfer of large area Chemical Vapor Deposition graphene to several polymers (low density polyethylene, high density polyethylene, polystyrene, polylactide acid and poly(vinylidenefluoride-co-trifluoroethylene) by means of only moderate heat and pressure, and the later mechanical peeling of the original graphene substrate. Simulations of the graphene-polymer interactions, rheological tests and graphene transfer at various experimental conditions show that controlling the graphene-polymer interface is the key to controlling graphene transfer. Raman spectroscopy and Optical Microscopy were used to identify and quantify graphene transferred to the polymer substrates. The results showed that the amount of graphene transferred to the polymer, from no-graphene to full graphene transfers, can be achieved by fine tuning the transfer conditions. As a result of the direct dry transfer technique, the graphene-polymer adhesion being stronger than graphene to Si/SiO2 wafer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.