In this work, we investigate the probability distribution function of the channel fading between a base station, an array of intelligent reflecting elements, known as large intelligent surfaces (LIS), and a single-antenna user. We assume that both fading channels, i.e., the channel between the base station and the LIS, and the channel between the LIS and the single user are Nakagami-m distributed. Additionally, we derive the exact bit error probability considering quadrature amplitude (M-QAM) and binary phase-shift keying (BPSK) modulations when the number of LIS elements, n, is equal to 2 and 3. We assume that the LIS can perform phase adjustment, but there is a residual phase error modeled by a Von Mises distribution. Based on the central limit theorem, and considering a large number of reflecting elements, we also present an accurate approximation and upper bounds for the bit error rate. Through several Monte Carlo simulations, we demonstrate that all derived expressions perfectly match the simulated results. INDEX TERMS Bit error rate, large intelligent surfaces, massive MIMO, Nakagami-m fading, von Mises circular distribution.
Despite many studies already published on large intelligent surfaces (LIS), there are still some gaps in mathematical models in the face of possible scenarios. In this work, we evaluate the performance of a single-input single-output (SISO) system in which an LIS acts as a controllable scatterer. We consider that the direct link between the transmitting and receiving devices is non-existent due to a blockage. Quantization phase errors at the LIS are considered since a high precision configuration of the reflection phases is not always feasible. We derive exact closed-form expressions for the spectral efficiencies, outage probabilities, and average symbol error rate (SER) of different modulations schemes. We assume a more comprehensive scenario in which b bits are dedicated to the phase adjustment of the LIS' elements. Based on Monte Carlo simulations, we prove the excellent accuracy of our approach and investigate the behavior of the power scaling law and the power required to reach a specific capacity, depending on the number of reflecting elements. We show that an LIS with approximately fifty elements and four dedicated bits for phase quantization outperforms the conventional system without LIS.INDEX TERMS Large Intelligent Surface, outage probability, quantization phase errors, spectral efficiency, symbol error rate.
Large intelligent surfaces (LIS) promises not only to improve the signal to noise ratio, and spectral efficiency but also to reduce the energy consumption during the transmission. We consider a base station equipped with an antenna array using the maximum ratio transmission (MRT), and a large reflector array sending signals to a single user. Each subchannel is affected by the Rayleigh flat fading, and the reflecting elements perform non-perfect phase correction which introduces a Von Mises distributed phase error. Based on the central limit theorem (CLT), we conclude that the overall channel has an equivalent Gamma fading whose parameters are derived from the moments of the channel fading between the antenna array and LIS, and also from the LIS to the single user. Assuming that the equivalent channel can be modeled as a Gamma distribution, we propose very accurate closed-form expressions for the bit error probability and a very tight upper bound. For the case where the LIS is not able to perform perfect phase cancellation, that is, under phase errors, it is possible to analyze the system performance considering the analytical approximations and the simulated results obtained using the well known Monte Carlo method. The analytical expressions for the parameters of the Gamma distribution are very difficult to be obtained due to the complexity of the nonlinear transformations of random variables with non-zero mean and correlated terms. Even with perfect phase cancellation, all the fading coefficients are complex due to the link between the user and the base station that is not neglected in this paper.
Large intelligent surfaces (LIS) are a new trend to achieve higher spectral efficiency and signal-to-noise ratio in mobile communications. For this reason, this paper proposes metrics to analyze the performance of systems with multiple antennas aided by LIS and derive the spectral efficiency, secrecy outage probability, and bit error probability in an environment with Nakagami-m distributed fading. In addition to an eavesdropper, there is a single-antenna user, an array of antennas at the transmitter side and the possibility of a direct link between transmitter and receiver. This study assumes that the LIS performs non-ideal phase cancellation leading to a residual phase error that follows a Von Mises distribution, and shows that the resulting channel can be accurately approximated by a Gamma distributed SNR whose parameters are analytically derived. From these formulas, it is possible to evaluate the effect of the strength of the line-of-sight link by varying the Nakagami parameter, m.
In this work, we derive the spectral efficiency, secrecy outage probability, and bit error rate of a communication system assisted by a large intelligent surface (LIS). We consider a single-antenna user and an array of antennas at the transmitter side and the possibility of a direct link between transmitter and receiver. Additionally, there is a single-antenna eavesdropper with a direct link to the transmitter, which is modeled as a Nakagami-m distributed fading coefficient. The channels from transmitter to the LIS and from the LIS to the user may or may not have the line-of-sight (LoS) and are modeled by the Nakagami- m distribution. Moreover, we assume that the LIS elements perform non-ideal phase cancellation leading to a residual phase error that assumes a Von Mises distribution. We show that the resulting channel can be accurately approximated by a Gamma distribution whose parameters are analytically estimated using the moments of the equivalent signal-to-noise ratio. We also provide an upper bound for the error probability for M-QAM modulations. With the derived formulas, we analyze the effect of the strength of the LoS link by varying the Nakagami parameter, m.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.