We present a numerical implementation for the Virtual Element Method that incorporates high order spaces. We include all the required computations in order to assemble the stiffness and mass matrices, and right hand side. Convergence of method is verified for different polygonal partitions. An specific mesh-free application that allows to approximate harmonic functions is discussed, based on high-order projections. This approach significantly improves running times compared to usual finite or virtual element methods, and can be modified for different virtual spaces and elliptic partial differential equations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.