Long-term monitoring of invertebrate communities is needed to understand the impact of key biodiversity erosion drivers (e.g. habitat fragmentation and degradation, invasive species, pollution, climatic changes) on the biodiversity of these high diverse organisms. The data we present are part of the long-term project SLAM (Long Term Ecological Study of the Impacts of Climate Change in the natural forest of Azores) that started in 2012, aiming to understand the impact of biodiversity erosion drivers on Azorean native forests (Azores, Macaronesia, Portugal). In this contribution, the design of the project, its objectives and the first available data for the spider fauna of two Islands (Pico and Terceira) are described. Passive flight interception SLAM traps (Sea, Land and Air Malaise traps) were used to sample native forest plots in several Azorean islands, with one trap being set up at each plot and samples taken every three months following the seasons. The key objectives of the SLAM project are: 1) collect long-term ecological data to evaluate species distributions and abundance at multiple spatial and temporal scales, responding to the Wallacean and Prestonian shortfalls, 2) identify biodiversity erosion drivers impacting oceanic indigenous assemblages under global change for conservation management purpose, 3) use species distribution and abundance data in model-based studies of environmental change in different islands, 4) contribute to clarifying the potential occurrence of an "insect decline" in Azores and identifying the spatial and temporal invasion patterns of exotic arthropod species, 5) contribute with temporal data to re-assess the Red-list status of Azorean endemic arthropods and 6) perform studies about the relationship between diversity (taxonomic, functional and phylogenetic) and ecosystem function. The project SLAM (Long Term Ecological Study of the Impacts of Climate Change in the natural forest of Azores) is described in detail. Seasonal distribution and abundance data of Azorean spiders, based on a long-term study undertaken between 2012 and 2019 in two Azorean Islands (Terceira and Pico), is presented. A total of 14979 specimens were collected, of which 6430 (43%) were adults. Despite the uncertainty of juvenile identification, juveniles are also included in the data presented in this paper, since the low diversity allows a relatively precise identification of this life-stage in Azores. A total of 57 species, belonging to 50 genera and 17 families, were recorded from the area, which constitutes baseline information of spiders from the studied sites for future long-term comparisons. Linyphiidae were the richest and most abundant family, with 19 (33%) species and 5973 (40%) specimens. The ten most abundant species are composed mostly of endemic or native non-endemic species and only one exotic species (Tenuiphantes tenuis (Blackwall, 1852)). Those ten most abundant species include 84% of all sampled specimens and are clearly the dominant species in the Azorean native forests. Textrix caudata L. Koch, 1872 was firstly reported from Terceira and Pico Islands, Araneus angulatus Clerck, 1757 was firstly reported from Terceira Island, Neriene clathrata (Sundevall, 1830) and Macaroeris diligens (Blackwall, 1867) were firstly reported from Pico Island. This publication contributes not only to a better knowledge of the arachnofauna present in native forests of Terceira and Pico, but also to understand the patterns of abundance and diversity of spider species, both seasonally and between years.
The data we present are part of the AGRO-ECOSERVICES project (Assessing ecosystem services and disservices provided by arthropod species in Azorean agroecosystems). The project aims to evaluate the relative importance of native and non-native organisms as ecosystem services (ES) and disservices (ED) providers, by combining novel, direct and quantitative tools for monitoring agro-biodiversity. Ecosystem services include evaluation of natural pest control by predation, seed predation on weed plants, pollination, decomposition and ecosystem disservices, herbivory and seed predation on crop plants. Active Aerial Searching (AAS) (only in maize-fields) and pitfall traps were used to sample the arthropod biodiversity (predatory spiders, true-bugs and beetles and main insect pests) on four agricultural habitats of Terceira Island, namely citrus orchards, low and high elevation maize fields and vineyards. We provided an inventory of all arthropods recorded in four Azorean agroecosystems (citrus orchards, low and high elevation maize fields and vineyards) from Terceira Island. A total of 50412 specimens were collected, belonging to four classes, 20 orders, 81 families and 200 identified species of arthropods. A total of 127 species are considered introduced (n = 22646) and 69 native non-endemic (n = 24117). Four endemic species were recorded with very few specimens (n = 14) and 3635 specimens belong to unidentified taxa recorded only at genus or family level. Five species are new records for Terceira Island, with Lagria hirta (Linnaeus, 1758) (Coleoptera, Tenebrionidae) being also a new record for the Azores. This publication contributes to a better knowledge of the arthropods communities present in agro-ecosystems of Terceira Island and will serve as a baseline for future monitoring schemes targeting the long-term change in arthropod diversity and abundance.
Long-term studies are key to understand the drivers of biodiversity erosion, such as land-use change and habitat degradation, climate change, invasive species or pollution. The long-term project SLAM (Long Term Ecological Study of the Impacts of Climate Change in the natural forest of Azores) started in 2012 and focuses on arthropod monitoring, using SLAM (Sea, Land and Air Malaise) traps, aiming to understand the impact of the drivers of biodiversity erosion on Azorean native forests (Azores, Portugal). This is the fourth contribution including SLAM project data and the second focused on the spider fauna (Arachnida, Araneae) of native forests on two islands (Pico and Terceira). In this contribution, we describe data collected between 2019 and 2021 and we analyse them together with a previously published database that covered the 2012-2019 period, in order to describe changes in species abundance patterns over the last ten years. We present abundance data of Azorean spider species for the 2019-2021 period in two Azorean Islands (Terceira and Pico). We also present analyses of species distribution and abundance of the whole sampling period. In the period of 2019-2021, we collected a total of 5110 spider specimens, of which 2449 (48%) were adults. Most juveniles, with the exception of some exotic Erigoninae, were also included in the data presented in this paper, since the low diversity of spiders in the Azores allows a relatively precise species-level identification of this life-stage. We recorded a total of 45 species, belonging to 39 genera and 16 families. The ten most abundant species were composed mostly of endemic or native non-endemic species and only two exotic species (Tenuiphantes tenuis (Blackwall, 1852) and Dysdera crocata C. L. Koch, 1838). They included 4308 individuals (84%) of all sampled specimens and were the dominant species in Azorean native forests. The family Linyphiidae was the richest and most abundant taxon, with 15 (33%) species and 2630 (51%) specimens. We report Cheiracanthium mildei L. Koch, 1864, a non-native species, from Pico Island for the first time. We found no new species records on Terceira Island. This publication contributes to increasing the baseline information for future long-term comparisons of the spiders on the studied sites and the knowledge of the arachnofauna of the native forests of Terceira and Pico, in terms of species abundance, distribution and diversity across seasons for a 10 years period.
A long-term study monitoring arthropods (Arthropoda) is being conducted since 2012 in the forests of Azorean Islands. Named "SLAM - Long Term Ecological Study of the Impacts of Climate Change in the natural forest of Azores", this project aims to understand the impact of biodiversity erosion drivers in the distribution, abundance and diversity of Azorean arthropods. The current dataset represents arthropods that have been recorded using a total of 42 passive SLAM traps (Sea, Land and Air Malaise) deployed in native, mixed and exotic forest fragments in seven Azorean Islands (Flores, Faial, Pico, Graciosa, Terceira, São Miguel and Santa Maria). This manuscript is the fifth data-paper contribution, based on data from this long-term monitoring project. We targeted taxa for species identification belonging to Arachnida (excluding Acari), Chilopoda, Diplopoda, Hexapoda (excluding Collembola, Lepidoptera, Diptera and Hymenoptera (but including only Formicidae)). Specimens were sampled over seven Azorean Islands during the 2012-2021 period. Spiders (Araneae) data from Pico and Terceira Islands are not included since they have been already published elsewhere (Costa and Borges 2021, Lhoumeau et al. 2022). We collected a total of 176007 specimens, of which 168565 (95.7%) were identified to the species or subspecies level. For Araneae and some Hemiptera species, juveniles are also included in this paper, since the low diversity in the Azores allows a relatively precise species-level identification of this life-stage. We recorded a total of 316 named species and subspecies, belonging to 25 orders, 106 families and 260 genera. The ten most abundant species were mostly endemic or native non-endemic (one Opiliones, one Archaeognatha and seven Hemiptera) and only one exotic species, the Julida Ommatoiulus moreleti (Lucas, 1860). These ten species represent 107330 individuals (60%) of all sampled specimens and can be considered as the dominant species in the Azorean native forests for the target studied taxa. The Hemiptera were the most abundant taxa, with 90127 (50.4%) specimens. The Coleoptera were the most diverse with 30 (28.6%) families. We registered 72 new records for many of the islands (two for Flores, eight for Faial, 24 for Graciosa, 23 for Pico, eight for Terceira, three for São Miguel and four for Santa Maria). These records represent 58 species. None of them is new to the Azores Archipelago. Most of the new records are introduced species, all still with low abundance on the studied islands. This publication contributes to increasing the baseline information for future long-term comparisons of the arthropods of the studied sites and the knowledge of the arthropod fauna of the native forests of the Azores, in terms of species abundance, distribution and diversity throughout seasons and years.
The study of flower visitor behavior and pollen transport dynamics within and between plants can be of great importance, especially for threatened or rare plant species. In this work, we aim to assess the flower visitor assemblage of the Madeiran endemic Echium candicans and evaluate the performance of the most common visitors through the analysis of their foraging behavior and pollen loads. The flower visitor assemblage of E. candicans is diverse, including several insect groups and the endemic lizard Teira dugesii, but bees are the most common visitors. In general, large bees (Amegilla quadrifasciata, Apis mellifera, and Bombus spp.) had the highest average visitation rates (>18 flowers/min) and their pollen loads had higher percentages of homospecific pollen (>66%) when compared with butterflies and hoverflies. The honeybee (Apis mellifera) and two bumblebees (Bombus terrestris and B. ruderatus) were the most efficient flower visitors of E. candicans, but their foraging behavior seems to favor geitonogamy. Other visitors, such as butterflies and the small bee Lasioglossum wollastoni, may have a complementary role to the honeybee and bumblebee species, as their high mobility is associated with fewer flower visits on each plant and may promote xenogamy. Two non-native bees (A. mellifera and B. ruderatus) are important flower visitors of E. candicans and may contribute mostly to self-pollination rendering the endemic plant more vulnerable to inbreeding effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.