In vitro differentiation of human intestinal organoids (HIOs) from pluripotent stem cells is an unparalleled system for creating complex, multi-cellular 3D structures capable of giving rise to tissue analogous to native human tissue. Current methods for generating HIOs rely on growth in an undefined tumor-derived extracellular matrix (ECM), which severely limits use of organoid technologies for regenerative and translational medicine. Here, we developed a fully defined, synthetic hydrogel based on a four-armed, maleimide-terminated poly(ethylene glycol) macromer that supports robust and highly reproducible in vitro growth and expansion of HIOs such that 3D structures are never embedded in tumor-derived ECM. We also demonstrate that the hydrogel serves as an injectable HIO vehicle that can be delivered into injured intestinal mucosa resulting in HIO engraftment and improved colonic wound repair. Together, these studies show proof-of-concept that HIOs may be used therapeutically to treat intestinal injury.
A synthetic ECM-mimetic hydrogel platform with independent control over adhesive ligand density, mechanical properties, and proteolytic degradation provides a valuable tool to study how cells transduce ECM properties into morphogenetic behaviors.
Naturally-derived materials have been extensively used as 3D cellular matrices as their inherent bioactivity makes them suitable for the study of many cellular processes. Nevertheless, lot-to-lot variability, inability to decouple biochemical and biophysical properties and, in some types, their tumor-derived nature limits their translational potential and reliability. One innovative approach to overcome these limitations has focused on incorporating bioactivity into cytocompatible, synthetic hydrogels that present tunable physicochemical properties. This review provides an overview of successful approaches to convey basement membrane-like bioactivity into 3D artificial hydrogel matrices in order to recapitulate cellular responses to native matrices. Recent advances involving biofunctionalization of synthetic hydrogels via incorporation of bioactive motifs that promote cell-matrix interactions and cell-directed matrix degradation will be discussed. This review highlights how the tunable physicochemical properties of biofunctionalized synthetic hydrogel matrices can be exploited to study the separate contributions of biochemical and biophysical matrix properties to different cellular processes.
In vitro differentiation of human pluripotent stem cell (hPSC)-derived organoids (HOs) facilitates the production of multicellular three-dimensional structures analogous to native human tissues. Most current methods for the generation of HOs rely on Matrigel, a poorly defined basement membrane derivative secreted by Engelbreth-Holm-Swarm mouse sarcoma cells, limiting the potential use of HOs for regenerative medicine applications. Here, we describe a protocol for the synthesis of a fully defined, synthetic hydrogel that supports the generation and culture of HOs. Modular, cell-encapsulating hydrogels are formed from a four-armed poly(ethylene glycol) macromer that has maleimide groups at each terminus (PEG-4MAL) and is conjugated to cysteine-containing adhesive peptides and cross-linked via protease-degradable peptides. The protocol also includes guidelines for the localized in vivo delivery of PEG-4MAL hydrogel-encapsulated HOs to injured mouse colon. The PEG-4MAL hydrogel supports the engraftment of the HOs and accelerates colonic wound repair. This culture and delivery strategy can thus be used to develop HO-based therapies to treat injury and disease. Hydrogel and tissue preparation and subsequent encapsulation can be performed within 2.5-3.5 h. Once HOs have been cultured in synthetic hydrogels for at least 14 d, they can be prepared and delivered to the mouse colon in under 5 h.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.