Purpose
The past few decades have produced a number of investigations into the correlation between project managers’ competencies and project success. As a result, competencies lists have become extensive “shopping lists.” The purpose of this paper is to define the most important competencies to project success and investigate their correlations.
Design/methodology/approach
The authors surveyed project managers on the importance of 28 project manager competencies to project success. Data were analyzed using univariate and multivariate procedures.
Findings
Data show that communication, commitment and leadership appear as the three most relevant aspects. Multivariate analysis identified seven groups of competencies: leadership, self-management, interpersonal, communication, technical, productivity and managerial.
Practical implications
The results confirm a growing trend toward soft skills and reinforce the need for an update on project management education to fill the gap between theory and practice.
Originality/value
Project manager competencies lists have become too extensive, and the field is in constant change; therefore, this study updates the discussion and downsizes the number of competencies to fewer, more relevant items.
The environmental damage arising from the construction and engineering services was responsible for the appearance of several norms and resolutions regulating and directing the sector's performance. In this article, we research how professionals with experience in public bids assess the difficulty degree of the implementation of those requirements and how they assess the environmental legislation regarding the protection and conservation of the environment, impact on costs, deadlines and the solution to environmental problems. The results show that industry professionals consider as "high" the level of difficulty to implement the addressed sustainability requirements, and that the Brazilian environmental legislation does not comply with its environmental protection role, increases the possibility of delays and costs of projects and services and hampers the emergence of solutions that could solve environmental problems.
Dilute-acid hydrolysis pretreatment of sugarcane bagasse resulted in release of 48% (18.4 g/L) of the xylan in the hemicellulose fraction into the hydrolysate as monomeric xylose. In order to enhance the recuperation of this monomer, a post-hydrolysis stage consisted of thermal treatment was carried out. This treatment resulted in an increase in xylose release of 62% (23.5 g/L) of the hemicellulose fraction. Original and post-hydrolysates were concentrated to the same levels of monomeric xylose in the fermentor feed. During the fermentation process, cellular growth was observed to be higher in the post-hydrolysate (3.5 g/L, Y(x/s) = 0.075 g cells/g xylose) than in the original hydrolysate (2.9 g/L, Y(x/s) = 0.068 g cells/g xylose). The post-treated hydrolysate required less concentration of sugars resulting in a lower concentration of fermentation inhibitors, which were formed primarily in the dilute acid hydrolysis step. Post-hydrolysis step led to a high xylose-xylitol conversion efficiency of 76% (0.7 g xylitol/g xylose) and volumetric productivity of 0.68 g xylitol/L h when compared to 71% (0.65 g xylitol/g xylose and productivity of 0.61 g xylitol/L h) for the original hemicellulosic hydrolysate.
Ten yeast strains were evaluated concerning their capabilities to assimilate biodiesel-derived glycerol in batch cultivation. The influence of glycerol concentration, temperature, pH and yeast extract concentration on biomass production was studied for the yeast selected. Further, the effect of agitation on glycerol utilization by the yeast Hansenula anomala was also studied. The yeast H. anomala CCT 2648 showed the highest biomass yield (0.30 g g(-1)) and productivity (0.19 g L(-1) h(-1)). Citric acid, succinic acid, acetic acid and ethanol were found as the main metabolites produced. The increase of yeast extract concentration from 1 to 3 g L(-1) resulted in high biomass production. The highest biomass concentration (21 g L(-1)), yield (0.45 g g(-1)) and productivity (0.31 g L(-1) h(-1)), as well as ribonucleotide production (13.13 mg g(-1)), were observed at 700 rpm and 0.5 vvm. These results demonstrated that glycerol from biodiesel production process showed to be a feasible substrate for producing biomass and ribonucleotides by yeast species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.