Shedding synchrotron light on microfluidic systems, exploring several contrasts in situ operando at the nanoscale, like X-ray fluorescence, diffraction, luminescence, and absorption, has the potential to reveal new properties and functionalities of materials across diverse areas, such as green energy, photonics, and nanomedicine. In this work, we present the micro-fabrication and characterization of a multifunctional polyester/glass sealed microfluidic device well-suited to combine with analytical X-ray techniques. The device consists of smooth microchannels patterned on glass, where three gold electrodes are deposited into the channels to serve in situ electrochemistry analysis or standard electrical measurements. It has been efficiently sealed through an ultraviolet-sensitive sticker-like layer based on a polyester film, and The burst pressure determined by pumping water through the microchannel(up to 0.22 MPa). Overall, the device has demonstrated exquisite chemical resistance to organic solvents, and its efficiency in the presence of biological samples (proteins) is remarkable. The device potentialities, and its high transparency to X-rays, have been demonstrated by taking advantage of the X-ray nanoprobe Carnaúba/Sirius/LNLS, by obtaining 2D X-ray nanofluorescence maps on the microchannel filled with water and after an electrochemical nucleation reaction. To wrap up, the microfluidic device characterized here has the potential to be employed in standard laboratory experiments as well as in situ and in vivo analytical experiments using a wide electromagnetic window, from infrared to X-rays, which could serve experiments in many branches of science.
Distributed energy resources (DERs) based on renewable power, such as photovoltaic (PV), have been increasing worldwide. To support this growth, some technologies have been developed to increase the hosting capacity (HC) of distribution networks (DNs), such as the Soft Open Point (SOP), which can replace normally open switches in DNs with the advantage of allowing power and voltage control. The benefits of SOPs in terms of increasing distributed generation (DG) hosting capacity can be enhanced by network reconfiguration (NR). In this work, an optimization-based approach is proposed for placing SOP in DN with simultaneous NR; that is, the proposed algorithm consists of a promising alternative to previous works in the literature that deal with SOP placement and NR in an iteratively way or in a two-step procedure, considering that better results can be obtained by simultaneously handling both options, as shown in the introduced case studies. The optimization problem is modeled as nonlinear mixed-integer programming, and solved by a Multi-objective Artificial Immune System (MOAIS). The proposed algorithm is applied to a well-known medium-voltage (MV) test system that is widely used for the problem at hand, and the results show the effectiveness of the proposed approach to maximize the HC by optimizing the SOP installation site in the tested system. An important outcome is that the association of SOP planning and NR in a simultaneous manner tends to provide better quality solutions, where HC can overcome 400% for multiple SOPs. Another outcome is that the proposed MOAIS is able to provide good concurrent solutions to support the decision-making of the DN planner.
A intenção do autor é mostrar que é possível avançar na implantação, em uma instituição pública brasileira, de modernos princípios de gestão, mesmo em um quadro de fortes restrições. Tem sido justamente esta a trajetória do Inmetro, que, desde o início da década de 90, desenvolve um vigoroso processo de mudança. A partir de um certo momento, o Inmetro aproximou-se do movimento de Reforma do Aparelho do Estado, conduzido pelo Ministério da Administração Federal e Reforma do Estado (MARE), cujas premissas mantinham uma forte sintonia com os princípios adotados na modernização do Instituto. A aproximação com o MARE não apenas abriu novas perspectivas institucionais para o Inmetro, como também demonstrou a eficácia e adequação dos princípios da reforma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.