RNA interference (RNAi) methods for insects are often limited by problems with double-stranded (ds) RNA delivery, which restricts reverse genetics studies and the development of RNAi-based biocides. We therefore delegated to insect symbiotic bacteria the task of: (i) constitutive dsRNA synthesis and (ii) trauma-free delivery. RNaseIII-deficient, dsRNA-expressing bacterial strains were created from the symbionts of two very diverse pest species: a long-lived blood-sucking bug, Rhodnius prolixus, and a short-lived globally invasive polyphagous agricultural pest, western flower thrips (Frankliniella occidentalis). When ingested, the manipulated bacteria colonized the insects, successfully competed with the wild-type microflora, and sustainably mediated systemic knockdown phenotypes that were horizontally transmissible. This represents a significant advance in the ability to deliver RNAi, potentially to a large range of non-model insects.
We describe a novel filamentous phage, designated VGJ, isolated from strain SG25-1 of Vibrio cholerae O139, which infects all O1 (classical and El Tor) and O139 strains tested. The sequence of the 7,542 nucleotides of the phage genome reveals that VGJ has a distinctive region of 775 nucleotides and a conserved region with an overall genomic organization similar to that of previously characterized filamentous phages, such as CTX of V. cholerae and Ff phages of Escherichia coli. The conserved region carries 10 open reading frames (ORFs) coding for products homologous to previously reported peptides of other filamentous phages, and the distinctive region carries one ORF whose product is not homologous to any known peptide. VGJ, like other filamentous phages, uses a type IV pilus to infect V. cholerae; in this case, the pilus is the mannose-sensitive hemagglutinin. VGJ-infected V. cholerae overexpresses the product of one ORF of the phage (ORF112), which is similar to single-stranded DNA binding proteins of other filamentous phages. Once inside a cell, VGJ is able to integrate its genome into the same chromosomal attB site as CTX, entering into a lysogenic state. Additionally, we found an attP structure in VGJ, which is also conserved in several lysogenic filamentous phages from different bacterial hosts. Finally, since different filamentous phages seem to integrate into the bacterial dif locus by a general mechanism, we propose a model in which repeated integration events with different phages might have contributed to the evolution of the CTX chromosomal region in V. cholerae El Tor.
SummaryThe Dps protein, a member of the ferritin family, contributes to DNA protection during oxidative stress and plays a central role in nucleoid condensation during stationary phase in unicellular eubacteria. Genome searches revealed the presence of three Dps-like orthologues within the genome of the Grampositive bacterium Streptomyces coelicolor. Disruption of the S. coelicolor dpsA, dpsB and dpsC genes resulted in irregular condensation of spore nucleoids in a gene-specific manner. These irregularities are correlated with changes to the spacing between sporulation septa. This is the first example of these proteins playing a role in bacterial cell division. Translational fusions provided evidence for both developmental control of DpsA and DpsC expression and their localization to sporogenic compartments of aerial hyphae. In addition, various stress conditions induced expression of the Dps proteins in a stimulusdependent manner in vegetative hyphae, suggesting stress-induced, protein-specific protective functions in addition to their role during reproductive cell division. Unlike in other bacteria, the S. coelicolor Dps proteins are not induced in response to oxidative stress.
A simple and high-throughput transposon mediated mutagenesis system employing in vitro shuttle transposon mutagenesis has been used to systematically mutagenise the Streptomyces coelicolor genome. To achieve the highest coverage, a new ordered cosmid library was also constructed. Individual cosmids from both the existing and new libraries were disrupted using the Tn5-based mini-transposon Tn5062. A total of 35,358 insertions were sequenced resulting in the disruption of 6,482 genes (83% of the predicted open reading frames). Complete information for both the newly generated cosmids as well as all the insertions has been uploaded onto a central database, StrepDB ( http://strepdb.streptomyces.org.uk/ ). All insertions, new cosmids and a range of transposon exchange cassettes are available for study of individual gene function.
Mediator, an evolutionary conserved large multisubunit protein complex with a central role in regulating RNA polymerase II-transcribed genes, serves as a molecular switchboard at the interface between DNA binding transcription factors and the general transcription machinery. Mediator subunits include the Cdk8 module, which has both positive and negative effects on activator-dependent transcription through the activity of the cyclin-dependent kinase Cdk8, and the tail module, which is required for positive and negative regulation of transcription, correct preinitiation complex formation in basal and activated transcription, and Mediator recruitment. Currently, the molecular mechanisms governing Mediator function remain largely undefined. Here we demonstrate an autoregulatory mechanism used by Mediator to repress transcription through the activity of distinct components of different modules. We show that the function of the tail module component Med3, which is required for transcription activation, is suppressed by the kinase activity of the Cdk8 module. Med3 interacts with, and is phosphorylated by, Cdk8; site-specific phosphorylation triggers interaction with and degradation by the Grr1 ubiquitin ligase, thereby preventing transcription activation. This active repression mechanism involving Grr1-dependent ubiquitination of Med3 offers a rationale for the substoichiometric levels of the tail module that are found in purified Mediator and the corresponding increase in tail components seen in cdk8 mutants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.