Knowledge of relaxation processes is fundamental in glass science and technology because relaxation is intrinsically related to vitrification, tempering as well as to annealing and several applications of glasses. However, there are conflicting reports—summarized here for different glasses—on whether the structural relaxation time of glass can be calculated using the Maxwell equation, which relates relaxation time with shear viscosity and shear modulus. Hence, this study aimed to verify whether these two relaxation times are comparable. The structural relaxation kinetics of a lead metasilicate glass were studied by measuring the refractive index variation over time at temperatures between 5 and 25 K below the fictive temperature, which was initially set 5 K below the glass‐transition temperature. Equilibrium shear viscosity was measured above and below the glass‐transition range, expanding the current knowledge by one order of magnitude. The Kohlrausch equation described very well the experimental structural relaxation kinetics throughout the investigated temperature range and the Kohlrausch exponent increased with temperature, in agreement with studies on other glasses. The experimental average structural relaxation times were much longer than the values computed from isostructural viscosity, as expected. Still, they were less than one order of magnitude higher than the average relaxation time computed through the Maxwell equation, which relies on equilibrium shear viscosity. Thus, these results demonstrate that the structural relaxation process is not controlled by isostructural viscosity and that equilibrium shear viscosity only provides a lower boundary for structural relaxation kinetics.
The diffusion mechanisms controlling viscous flow, structural relaxation, liquid-liquid phase separation, crystal nucleation, and crystal growth in multicomponent glass-forming liquids are of great interest and relevance in physics, chemistry, materials, and glass science. However, the diffusing entities that control each of these important dynamic processes are still unknown. The main objective of this work is to shed some light on this mystery, advancing the knowledge on this phenomenon. For that matter, we measured the crystal growth rates, the viscosity, and lead diffusivities in PbSiO liquid and glass in a wide temperature range. We compared our measured values with published data covering 16 orders of magnitude. We suggest that above a certain temperature range T (1.2T-1.3T), crystal growth and viscous flow are controlled by the diffusion of silicon and lead. Below this temperature, crystal growth and viscous flow are more sluggish than the diffusion of silicon and lead. Therefore, T marks the temperature where decoupling between the (measured) cationic diffusivity and the effective diffusivities calculated from viscosity and crystal growth rates occurs. We reasonably propose that the nature or size of the diffusional entities controlling viscous flow and crystal growth below T is quite different; the slowest is the one controlling viscous flow, but both processes require cooperative movements of some larger structural units rather than jumps of only one or a few isolated atoms.
This paper describes the preparation of a transparent glass‐ceramic from the SiO2‐K2O‐ZnO‐Al2O3‐TiO2 system containing a single crystalline phase, gahnite (ZnAl2O4). TiO2 was used as a nucleating agent for the heat‐induced precipitation of gahnite crystals of 5‐10 nm. The evolution of the ZnAl2O4 spinel structure through the gradual formation of Al‐O bonds was examined by infrared spectroscopy. The dark brown color of the transparent precursor glass and glass‐ceramic was eliminated using CeO2. The increase in transparency of the CeO2‐doped glass and glass‐ceramics was demonstrated by UV‐visible absorption spectroscopy. EPR measurements confirmed the presence of Ce3+ ions, indicating that CeO2 was effective in eliminating the brown color introduced by Ti3+ ions via oxidation to Ti+4. The hardness of the glass‐ceramic was 30% higher than that of the as‐prepared glasses. This work offers key guidelines to produce hard, transparent glass‐ceramics which may be potential candidates for a variety of technological applications, such as armor and display panels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.