Elite soccer teams that participate in European competitions need to have players in the best physical and psychological status possible to play matches. As a consequence of congestive schedule, controlling the training load (TL) and thus the level of effort and fatigue of players to reach higher performances during the matches is therefore critical. Therefore, the aim of the current study was to provide the first report of seasonal internal and external training load that included Hooper Index (HI) scores in elite soccer players during an in-season period. Nineteen elite soccer players were sampled, using global position system to collect total distance, high-speed distance (HSD) and average speed (AvS). It was also collected session rating of perceived exertion (s-RPE) and HI scores during the daily training sessions throughout the 2015–2016 in-season period. Data were analysed across ten mesocycles (M: 1 to 10) and collected according to the number of days prior to a one-match week. Total daily distance covered was higher at the start (M1 and M3) compared to the final mesocycle (M10) of the season. M1 (5589m) reached a greater distance than M5 (4473m) (ES = 9.33 [12.70, 5.95]) and M10 (4545m) (ES = 9.84 [13.39, 6.29]). M3 (5691m) reached a greater distance than M5 (ES = 9.07 [12.36, 5.78]), M7 (ES = 6.13 [8.48, 3.79]) and M10 (ES = 9.37 [12.76, 5.98]). High-speed running distance was greater in M1 (227m), than M5 (92m) (ES = 27.95 [37.68, 18.22]) and M10 (138m) (ES = 8.46 [11.55, 5.37]). Interestingly, the s-RPE response was higher in M1 (331au) in comparison to the last mesocycle (M10, 239au). HI showed minor variations across mesocycles and in days prior to the match. Every day prior to a match, all internal and external TL variables expressed significant lower values to other days prior to a match (p<0.01). In general, there were no differences between player positions. Conclusions: Our results reveal that despite the existence of some significant differences between mesocycles, there were minor changes across the in-season period for the internal and external TL variables used. Furthermore, it was observed that MD-1 presented a reduction of external TL (regardless of mesocycle) while internal TL variables did not have the same record during in-season match-day-minus.
(1) Background: Training load monitoring has become a relevant research-practice gap to control training and match demands in team sports. However, there are no systematic reviews about accumulated training and match load in football. (2) Methods: Following the preferred reporting item for systematic reviews and meta-analyses (PRISMA), a systematic search of relevant English-language articles was performed from earliest record to March 2020. The search included descriptors relevant to football, training load, and periodization. (3) Results: The literature search returned 7972 articles (WoS = 1204; Pub-Med = 869, SCOPUS = 5083, and SportDiscus = 816). After screening, 36 full-text articles met the inclusion criteria and were reviewed. Eleven of the included articles analyzed weekly training load distribution; fourteen, the weekly training load and match load distribution; and eleven were about internal and external load relationships during training. The reviewed articles were based on short-telemetry systems (n = 12), global positioning tracking systems (n = 25), local position measurement systems (n = 3), and multiple-camera systems (n = 3). External load measures were quantified with distance and covered distance in different speed zones (n = 27), acceleration and deceleration (n = 13) thresholds, accelerometer metrics (n = 11), metabolic power output (n = 4), and ratios/scores (n = 6). Additionally, the internal load measures were reported with perceived exertion (n = 16); heart-rate-based measures were reported in twelve studies (n = 12). (4) Conclusions: The weekly microcycle presented a high loading variation and a limited variation across a competitive season. The magnitude of loading variation seems to be influenced by the type of week, player’s starting status, playing positions, age group, training mode and contextual variables. The literature has focused mainly on professional men; future research should be on the youth and female accumulated training/match load monitoring.
In-season training load quantification of one-, two-and three-game week schedules in a top European professional soccer team. Phb (2018), https://doi. AbstractTop European soccer teams that play in UEFA competitions often participate in one, two-or three-games per week. Therefore, it is necessary to understand the variations in training load (TL) according to each team's competitive schedule. The aim of this study was to quantify internal and external TLs within five microcycles: M4 and M5onegame weeks; M1 and M3two-game weeks; M2three-game week). The sample consisted of thirteen elite soccer players. A global positioning system (GPS) was used to measure the total distance covered and distances of different exercise training zones (1-5), the session ratings of perceived exertion (s-RPE) scores and the amount of creatine kinase (CK) created during daily training sessions for the 2015-2016 in-season period. The data were analysed with respect to the number of days prior to a given match. The main results indicate that there was a significant difference in training intensity for zone 1 between M5 and M3 (4010.2±103.5 and 4507.6±133.0 m, respectively); a significant difference in training intensity for zone 3 between M4 and M2 (686.1±42.8 and 801.2±61.2 m, respectively); a significant difference in the duration of the training sessions and matches between M5 and M2 (69.2±2.1 and 79.6±2.3) and M1 and M2 (69.7±1.0 and 79.6±2.3); and finally, there was a significant difference in CK between M1 and M5 (325.5±155.0 and 194.4±48.9). Moreover, therewas a significant decrease in TL in the last day prior to a match, for all microcycles and all variables. There was no significant difference with respect to s-RPE. This study provides the first report of daily external and internal TLs and weekly accumulated load (training sessions and match demands) during one, two, and three-game week schedules in a group of elite soccer players. Expected significant differences are found in daily and accumulated loads for within-and between-game schedules. A similar pattern is ACCEPTED MANUSCRIPT A C C E P T E D M A N U S C R I P Texhibited for one-and two-game week microcycles regarding the day before the match, which exhibits a decrease in all variables.
Monitoring the training load in football is an important strategy to improve athletic performance and an effective training periodization. The aim of this study was two-fold: (1) to quantify the weekly training load and recovery status variations performed by under-15, under-17 and under-19 sub-elite young football players; and (2) to analyze the influence of age, training day, weekly microcycle, training and playing position on the training load and recovery status. Twenty under-15, twenty under-17 and twenty under-19 players were monitored over a 2-week period during the first month of the 2019–2020 competitive season. Global positioning system technology (GPS) was used to collect external training loads: total distance covered, average speed, maximal running speed, relative high-speed running distance, high metabolic load distance, sprinting distance, dynamic stress load, accelerations and decelerations. Internal training load was monitored using ratings of perceived exertion (RPE) and session rating of perceived exertion (sRPE). Recovery status was obtained using the total quality recovery (TQR) scale. The results show an age-related influence for external training load (p ≤ 0.001; d = 0.29–0.86; moderate to strong effect), internal training load (p ≤ 0.001, d = 0.12–0.69; minimum to strong effect) and recovery status (p ≤ 0.001, d = 0.59; strong effect). The external training load presented differences between training days (p < 0.05, d = 0.26–0.95; moderate to strong effect). The playing position had a minimum effect on the weekly training load (p < 0.05; d = 0.06–0.18). The weekly microcycle had a moderate effect in the TD (p < 0.05, d = 0.39), RPE (p < 0.05; d = 0.35) and sRPE (p < 0.05, d = 0.35). Interaction effects were found between the four factors analyzed for deceleration (F = 2.819, p = 0.017) and between inter-day, inter-week and age for total covered distance (F = 8.342, p = 0.008). This study provided specific insights about sub-elite youth football training load and recovery status to monitor training environments and load variations. Future research should include a longer monitoring period to assess training load and recovery variations across different season phases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.