Photosynthetic efficiency has become the target of several breeding programs since the positive correlation between photosynthetic rate and yield in soybean suggests that the improvement of photosynthetic efficiency may be a promising target for new yield gains. However, studies on combining ability of soybean genotypes for physiological traits are still scarce in the literature. The objective of this study was to estimate the combining ability of soybean genotypes based on F2 generation aiming to identify superior parents and segregating populations for physiological traits. Twenty-eight F2 populations resulting from partial diallel crossings between eleven lines were evaluated in two crop seasons for the physiological traits: photosynthesis, stomatal conductance, internal CO2 concentration, and transpiration. General combining ability (GCA) of the parents and specific combining ability (SCA) of the F2 populations were estimated. Our findings reveal the predominance of additive effects in controlling the traits. The genotype TMG 7062 IPRO is the most promising parent for programs aiming at photosynthetic efficiency. We have also identified other promising parents and proposed cross-breeding with higher potential for obtaining superior lines for photosynthetic efficiency.
Gas exchange analysis is an important technique, as the reduction in yield may be related to the decreased photosynthetic activity, due to adverse climatic factors in the growing site. The hypothesis of this study was that contrasting soil water conditions result in different photosynthetic performance in soybean genotypes. Thus, our objective was to analyse the physiological capacity in soybean genotypes under field conditions with optimal soil moisture and under water deficit. The experimental design was random blocks with 10 genotypes (P1, P2, P3, P4, P5, P6, P7, P8, P9 and P10) and three replicates. Individual analysis of variance was performed in both environments (irrigated and rainfed), and a correlation network between the traits was generated. We measured the traits net photosynthesis, stomatal conductance, internal CO2 concentration, instant water‐use efficiency, instant carboxylation efficiency and grain yield. Stressed plants reduce stomatal conductance and transpiration, but increase the instant water‐use efficiency as a defence mechanism in sub‐optimal soil moisture conditions. The P6 genotype obtained better physiological capacity under irrigated conditions, while the P10 genotype showed the better performance under rainfed conditions, which makes it tolerant to water stress. Our findings can contribute to the genotype formation and parental choice steps in breeding programs aimed at obtaining both irrigation‐responsive and drought‐tolerant genotypes.
In Brazil, the common bean crop has representative agricultural exploitation, not only because of its production economic value, but also because there is a large cultivation area. This research aimed to investigate the direct and indirect relationship of morphological components on grain yield in common bean plants. This study was carried out in a Quartzarenic Neosol in the municipality of Cassilândia, Mato Grosso do Sul State, Brazil, in the agricultural year of 2016/2017. The evaluated traits were: grains yield (GY) with its primary components; mass of one hundred grains (HG); number of grains per plant (GP); number of grains per pod (GPP); dry weight of aerial parts (DWA); number of pod per plant (PP); plant dry mass (DM); plant high (PH); and stem diameter (SD). Initially, the Pearson's correlation among these traits was estimated and the correlation network was used to graphically express the obtained results. Analysis of these data through the statistical techniques of multicollinearity diagnosis followed by path analysis enabled to verify that the number of pod per plant, the mass of one hundred grains, and the number of grains per plant, among the primary components of grain yield, are the traits of greater potential to select and identify superior genotypes for grain productivity yield, and that dry matter and stem diameter traits showed a negative correlation with grain yield in common bean grains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.