We present a two-dimensional computational study of a shock interaction with a particle-seeded curtain where particles initially comprise 4% by volume, and the rest is air. If the initial depth of the curtain in the streamwise direction is variable, numerical results predict vortex formation in both the gas phase and the dispersed phase after the shock-curtain interaction. The phenomenon is distinct from baroclinic (Richtmyer-Meshkov) instability observed on gaseous density interfaces and is caused by the changes in the particle phase number density distribution and related interphase velocity changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.