Stroke remains a leading cause of death and disability worldwide. Despite continuous advances, the identification of key molecular signatures in the hyper-acute phase of ischemic stroke is still a primary interest for translational research on stroke diagnosis, prognosis, and treatment. Data integration from high-throughput -omics techniques has become crucial to unraveling key interactions among different molecular elements in complex biological contexts, such as ischemic stroke. Thus, we used advanced data integration methods for a multi-level joint analysis of transcriptomics and proteomics datasets obtained from mouse brains at 2 h after cerebral ischemia. By modeling net-like correlation structures, we identified an integrated network of genes and proteins that are differentially expressed at a very early stage after stroke. We validated 10 of these deregulated elements in acute stroke, and changes in their expression pattern over time after cerebral ischemia were described. Of these, CLDN20, GADD45G, RGS2, BAG5, and CTNND2 were next evaluated as blood biomarkers of cerebral ischemia in mice and human blood samples, which were obtained from stroke patients and patients presenting stroke-mimicking conditions. Our findings indicate that CTNND2 levels in blood might potentially be useful for distinguishing ischemic strokes from stroke-mimicking conditions in the hyper-acute phase of the disease. Furthermore, circulating GADD45G content within the first 6 h after stroke could also play a key role in predicting poor outcomes in stroke patients. For the first time, we have used an integrative biostatistical approach to elucidate key molecules in the initial stages of stroke pathophysiology and highlight new notable molecules that might be further considered as blood biomarkers of ischemic stroke.
The authors report the molecular findings in a patient with McArdle disease who harbored a silent polymorphism (K608K) in the myophosphorylase gene. cDNA studies demonstrated that this polymorphism leads to a severe mosaic alteration in mRNA splicing, including exon skipping, activation of cryptic splice-sites, and exon-intron reorganizations. These findings suggest that, in patients with McArdle disease in whom no pathogenic mutation has been found, any a priori silent polymorphism should be re-evaluated as a putative splicing mutation.
Chitinase 3-like 1 (CHI3L1) is known to play a role as prognostic biomarker in the early stages of multiple sclerosis (MS), and patients with high cerebrospinal fluid CHI3L1 levels have an increased risk for the development of neurological disability. Here, we investigated its potential neurotoxic effect by adding recombinant CHI3L1 in vitro to primary cultures of mouse cortical neurons and evaluating both neuronal functionality and survival by immunofluorescence. CHI3L1 induced a significant neurite length retraction after 24 and 48 hours of exposure and significantly reduced neuronal survival at 48 hours. The cytotoxic effect of CHI3L1 was neuron-specific and was not observed in mouse immune or other central nervous system cells. These results point to a selective neurotoxic effect of CHI3L1 in vitro and suggest a potential role of CHI3L1 as therapeutic target in MS patients. open Scientific RepoRtS | (2020) 10:7118 | https://doi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.