Textbooks frequently use the Helmholtz theorem to derive expressions for the electrostatic and magnetostatic fields but they do not usually apply this theorem to derive expressions for the time-dependent electric and magnetic fields, even when there is no formal objection to doing so because the proof of the theorem does not involve time derivatives but only spatial derivatives. Here we address the question as to whether the Helmholtz theorem is useful to derive expressions for the fields of Maxwell's equations. We show that when this theorem is applied to Maxwell's equations we obtain instantaneous expressions of the electric and magnetic fields, which are formally correct but of little practical usefulness. We then discuss two generalizations of the theorem which are shown to be useful to derive the retarded fields.
In most introductory courses on electrodynamics, one is taught the electric charge is quantised but no theoretical explanation related to this law of nature is offered. Such an explanation is postponed to graduate courses on electrodynamics, quantum mechanics and quantum field theory, where the famous Dirac quantisation condition is introduced, which states that a single magnetic monopole in the Universe would explain the electric charge quantisation. Even when this condition assumes the existence of a not-yet-detected magnetic monopole, it provides the most accepted explanation for the observed quantisation of the electric charge. However, the usual derivation of the Dirac quantisation condition involves the subtle concept of an "unobservable" semi-infinite magnetised line, the so-called "Dirac string," which may be difficult to grasp in a first view of the subject. The purpose of this review is to survey the concepts underlying the Dirac quantisation condition, in a way that may be accessible to advanced undergraduate and graduate students. Some of the discussed concepts are gauge invariance, singular potentials, single-valuedness of the wave function, undetectability of the Dirac string and quantisation of the electromagnetic angular momentum. Five quantum-mechanical and three semi-classical derivations of the Dirac quantisation condition are reviewed. In addition, a simple derivation of this condition involving heuristic and formal arguments is presented.
In this note we explicitly show how the Lorentz transformations can be derived by demanding form invariance of the d'Alembert operator in inertial reference frames.
Classical electrodynamics is a local theory describing local interactions between charges and electromagnetic fields and therefore one would not expect that this theory could predict nonlocal effects. But this perception implicitly assumes that the electromagnetic configurations lie in simply connected regions. In this paper, we consider an electromagnetic configuration lying in a non-simply connected region, which consists of a charged particle encircling an infinitely long solenoid enclosing a uniform magnetic flux, and show that the electromagnetic angular momentum of this configuration describes a nonlocal interaction between the encircling charge outside the solenoid and the magnetic flux confined inside the solenoid. We argue that the nonlocality of this interaction is of topological nature by showing that the electromagnetic angular momentum of the configuration is proportional to a winding number. The magnitude of this electromagnetic angular momentum may be interpreted as the classical counterpart of the Aharonov–Bohm phase.
Two procedures to introduce the familiar retarded potentials of Maxwell’s equations are reviewed. The first well-known procedure makes use of the Lorenz-gauge potentials of Maxwell’s equations. The second less-known procedure applies the retarded Helmholtz theorem to Maxwell’s equations. Both procedures are compared in the context of an undergraduate presentation of electrodynamics. The covariant form of both procedures is discussed for completeness. As a related discussion, two procedures to introduce the unfamiliar instantaneous potentials of Maxwell’s equations are also reviewed. The first procedure applies the standard Helmholtz theorem to Maxwell’s equations and the second one uses the Coulomb-gauge potentials of Maxwell’s equations. The retarded and instantaneous forms of the potentials of Maxwell’s equations are briefly commented upon. The retarded Helmholtz theorem is used to introduce the retarded potentials of Maxwell’s equations with magnetic monopoles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.