We present cosmological parameter constraints from a tomographic weak gravitational lensing analysis of ∼450 deg 2 of imaging data from the Kilo Degree Survey (KiDS). For a flat ΛCDM cosmology with a prior on H 0 that encompasses the most recent direct measurements, we find S 8 ≡ σ 8 Ω m /0.3 = 0.745 ± 0.039. This result is in good agreement with other low redshift probes of large scale structure, including recent cosmic shear results, along with pre-Planck cosmic microwave background constraints. A 2.3σ tension in S 8 and 'substantial discordance' in the full parameter space is found with respect to the Planck 2015 results. We use shear measurements for nearly 15 million galaxies, determined with a new improved 'self-calibrating' version of lensfit validated using an extensive suite of image simulations. Four-band ugri photometric redshifts are calibrated directly with deep spectroscopic surveys. The redshift calibration is confirmed using two independent techniques based on angular cross-correlations and the properties of the photometric redshift probability distributions. Our covariance matrix is determined using an analytical approach, verified numerically with large mock galaxy catalogues. We account for uncertainties in the modelling of intrinsic galaxy alignments and the impact of baryon feedback on the shape of the non-linear matter power spectrum, in addition to the small residual uncertainties in the shear and redshift calibration. The cosmology analysis was performed blind. Our high-level data products, including shear correlation functions, covariance matrices, redshift distributions, and Monte Carlo Markov Chains are available at http://kids.strw.leidenuniv.nl.
Masses of clusters of galaxies from weak gravitational lensing analyses of ever larger samples are increasingly used as the reference to which baryonic scaling relations are compared. In this paper we revisit the analysis of a sample of 50 clusters studied as part of the Canadian Cluster Comparison Project. We examine the key sources of systematic error in cluster masses. We quantify the robustness of our shape measurements and calibrate our algorithm empirically using extensive image simulations. The source redshift distribution is revised using the latest state-of-the-art photometric redshift catalogs that include new deep near-infrared observations. Nonetheless we find that the uncertainty in the determination of photometric redshifts is the largest source of systematic error for our mass estimates. We use our updated masses to determine b, the bias in the hydrostatic mass, for the clusters detected by Planck. Our results suggest 1 − b = 0.76 ± 0.05(stat) ± 0.06(syst), which does not resolve the tension with the measurements from the primary cosmic microwave background.
The Kilo-Degree Survey (KiDS) is a multi-band imaging survey designed for cosmological studies from weak lensing and photometric redshifts. It uses the ESO VLT Survey Telescope with its wide-field camera OmegaCAM. KiDS images are taken in four filters similar to the SDSS ugri bands. The best-seeing time is reserved for deep r-band observations. The median 5-σ limiting AB magnitude is 24.9 and the median seeing is below 0.7 . Initial KiDS observations have concentrated on the GAMA regions near the celestial equator, where extensive, highly complete redshift catalogues are available. A total of 109 survey tiles, one square degree each, form the basis of the first set of lensing analyses of halo properties of GAMA galaxies. 9 galaxies per square arcminute enter the lensing analysis, for an effective inverse shear variance of 69 per square arcminute. Accounting for the shape measurement weight, the median redshift of the sources is 0.53. KiDS data processing follows two parallel tracks, one optimized for weak lensing measurement and one for accurate matched-aperture photometry (for photometric redshifts). This technical paper describes the lensing and photometric redshift measurements (including a detailed description of the Gaussian Aperture and Photometry pipeline), summarizes the data quality, and presents extensive tests for systematic errors that might affect the lensing analyses. We also provide first demonstrations of the suitability of the data for cosmological measurements, and describe our blinding procedure for preventing confirmation bias in the scientific analyses. The KiDS catalogues presented in this paper are released to the community through http://kids.strw.leidenuniv.nl.
We test extensions to the standard cosmological model with weak gravitational lensing tomography using 450 deg 2 of imaging data from the Kilo Degree Survey (KiDS). In these extended cosmologies, which include massive neutrinos, nonzero curvature, evolving dark energy, modified gravity, and running of the scalar spectral index, we also examine the discordance between KiDS and cosmic microwave background measurements from Planck. The discordance between the two datasets is largely unaffected by a more conservative treatment of the lensing systematics and the removal of angular scales most sensitive to nonlinear physics. The only extended cosmology that simultaneously alleviates the discordance with Planck and is at least moderately favored by the data includes evolving dark energy with a time-dependent equation of state (in the form of the w 0 − w a parameterization). In this model, the respective S 8 = σ 8 Ω m /0.3 constraints agree at the 1σ level, and there is 'substantial concordance' between the KiDS and Planck datasets when accounting for the full parameter space. Moreover, the Planck constraint on the Hubble constant is wider than in ΛCDM and in agreement with the Riess et al. (2016) direct measurement of H 0 . The dark energy model is moderately favored as compared to ΛCDM when combining the KiDS and Planck measurements, and remains moderately favored after including an informative prior on the Hubble constant. In both of these scenarios, marginalized constraints in the w 0 − w a plane are discrepant with a cosmological constant at the 3σ level. Moreover, KiDS constrains the sum of neutrino masses to 4.0 eV (95% CL), finds no preference for time or scale dependent modifications to the metric potentials, and is consistent with flatness and no running of the spectral index. The analysis code is publicly available at https://github.com/sjoudaki/kids450.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.