In the present work, a novel design of centrifugal atomiser for producing pure copper powder was studied. The novel complementary hybrid system provides an external stream of gas to increase the cooling rate of the atomised particles. Effects of the operating parameters, such as disc rotating speed and gas flowrate on the morphology, particle size distribution, cooling rate and microstructure, were analysed. It was evidenced from the experimental results that the median particle size in the novel atomisation process is mainly controlled by centrifugal disintegration. The microstructure of the produced powders was equiaxed and the grain size decreased with increasing gas flowrate. The cooling rate experienced by centrifugal atomised Cu powders were studied via numerical formulation estimated to be 10 4-10 6 K/s. The results show that the cooling rate is a strong function of particle size and increasing the rotating disc speed also increased the cooling rates.
Open-cell Al-4.5Cu (wt.%) foams were produced by the replication casting technique in cell sizes of 2.00–2.38 and 3.35–4.75 mm. The fabricated foams were subjected to solution and aging treatments to assess the effect of such heat treatments on the microstructure and mechanical properties of the foams as a function of cell size. Solution and aging heat treatments were carried out at 535 °C for 5.5 h and 170 °C for 8 h, respectively. The porosity and relative density of all produced samples were estimated by He pycnometer. In addition, the average cell wall thickness was assessed by image analysis to correlate this variable with the response to heat treatments of the material. The microstructural evolution of the heat-treated samples was analyzed by means of scanning electron microscopy, scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and differential scanning calorimetry. The mechanical characterization of the studied samples was carried out using uniaxial compression tests and microhardness tests. It was found that the foams did present different responses to both solution and aging treatments as a function of cell size, attributing these outcomes to the cell wall thickness variations, which presumably conditioned the cooling rates after heat treatments, thereby influencing the resulting microstructures and precipitation of Al-Cu second phases.
Graphical abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.