Abstract. Metagenomics is an inherently complex field in which one of the primary goals is to determine the compositional organisms present in an environmental sample. Thereby, diverse tools have been developed that are based on the similarity search results obtained from comparing a set of sequences against a database. However, to achieve this goal there still are affairs to solve such as dealing with genomic variants and detecting repeated sequences that could belong to different species in a mixture of uneven and unknown representation of organisms in a sample. Hence, the question of whether analyzing a sample with reads provides further understanding of the metagenome than with contigs arises. The assembly yields larger genomic fragments but bears the risk of producing chimeric contigs. On the other hand, reads are shorter and therefore their statistical significance is harder to asses, but there is a larger number of them. Consequently, we have developed a workflow to assess and compare the quality of each of these alternatives. Synthetic read datasets beloging to previously identified organisms are generated in order to validate the results. Afterwards, we assemble these into a set of contigs and perform a taxonomic analysis on both datasets. The tools we have developed demonstrate that analyzing with reads provide a more trustworthy representation of the species in a sample than contigs especially in cases that present a high genomic variability.
Abstract. Bioinformatics has moved from command-line standalone programs to web-service based environments. Such trend has resulted in an enormous amount of online resources which can be hard to find and identify, let alone execute and exploit. Furthermore, these resources are aimed -in general-to solve specific tasks. Usually, this tasks need to be combined in order to achieve the desired results. In this line, finding the appropriate set of tools to build up a workflow to solve a problem with the services available in a repository is itself a complex exercise. Issues such as services discovering, composition and representation appear. On the technological side, mobile devices have experienced an incredible growth in the number of users and technical capabilities. Starting from this reality, in the present paper, we propose a solution for service discovering and workflow generation while distinct approaches of representing workflows in a mobile environment are reviewed and discussed. As a proof of concept, a specific use case has been developed: we have embedded an expanded version of our Magallanes search engine into mORCA, our mobile client for bioinformatics. Such composition delivers a powerful and ubiquitous solution that provides the user with a handy tool for not only generate and represent workflows, but also services, data types, operations and service types discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.