This study analyzed the effects of tree size, and correlated architectural tree characteristics, on the assemblages of ants and insect herbivores associated with Anadenanthera macrocarpa (Mimosaceae). The latter is a myrmecophilous tree species from the Atlantic rainforest in south‐eastern Brazil. Ants and insect herbivores were collected in 30 individuals of A. macrocarpa, ranging from young individuals (>3 m in height) to emergent trees (up to 40 m). Tree height was a strong indicator of other tree characteristics, including trunk diameter, crown height, crown volume, and number of bifurcations. Ants were collected using arboreal pitfall traps and beating, while insect herbivores with beating only. There was a significant increase in both abundance and species richness of ants and insect herbivores with an increase in tree height. In addition, tree height had a significant effect on the species composition of ants and insect herbivores. Assemblages of both taxa showed a nested organization pattern. The species found in small‐ and medium‐sized trees, in general, consisted of a subset of the species found in the crowns and branches of larger, canopy or emergent trees. Thus, in A. macrocarpa, there was not a replacement of insect species with plant ontogeny. This finding is at variance with those conducted in tropical evergreen forests and which show a clear stratification between the understory and canopy insect faunas. Additional studies are needed to explain these contrasting patterns, but it is possible that differences in microclimate are involved. As the forest we studied is semi‐deciduous, microclimatic gradients between the understory and the canopy habitat are probably less severe than in an evergreen forest, thus resulting in a lower turnover of species.
Ants are a dominant group in tropical savannas and here we examined the responses of the arboreal and ground-dwelling ant fauna to a fire in a Neotropical savanna (cerrado) reserve in Central Brazil. Ants were collected using pitfall traps and baits placed in trees and on the ground beneath each tree. Of the 36 trees marked along two transects, half (from each transect) were burned and half not. The same trees were sampled 1 wk before and again 3 and 12 mo after the fire. Rarefaction curves and ordination analyses using data from all trees from each side of each transect indicated that overall ant species richness and composition did not change after fire. Fire, however, reduced the mean number of ant species per tree, and increased the mean number of species on the ground. Fire increased the average abundance of specialist predators, Camponotini, and opportunistic species, and decreased that of arboreal specialists. Changes in the ground-dwelling fauna were only detected 12 mo after the fire, while those in the arboreal fauna occurred earlier and were no longer apparent 12 mo after the fire. We suggest that these contrasting results represent mainly an indirect response of the ant communities to fire-induced changes in vegetation. Given the temporary and small scale nature of the effects detected and the overall resilience of the ant fauna, our results indicate that a single fire in the cerrado vegetation does not greatly impact the structure of ant communities in the short term.
Ecological patterns and processes are highly scale-dependent, but few studies have used standardized methodology to examine how scale dependency varies across continents. This paper examines scale dependency in comparative ant species richness and turnover in savannas of Australia and Brazil, which are well-matched climatically but whose ant faunas have contrasting biogeographic origins. The study was conducted in savanna woodland near Darwin in northern Australia and Uberlândia in central Brazil. The sampling design consisted of eight 400-m line transects, four in each continent, with eight pitfall traps located on and around each of 20 trees evenly spaced along each transect. Ant richness and species turnover were compared at three spatial scales: pitfalls associated with a tree, trees within a transect and transects within a savanna.The composition of the Australian and Brazilian savanna ant faunas was broadly similar at the subfamily level, despite the very low proportion of shared genera and species. The ground and arboreal ant faunas were very distinct from each other in both savannas, but especially in Brazil. Overall ant abundance was almost three times higher in Australia than in Brazil, both on the ground and on vegetation, but overall species richness was higher in Brazil (150 species) than in Australia (93). There was no significant difference in the mean number of species per pitfall trap, but the mean species richness was significantly higher in Brazil than in Australia at both the tree and transect scales. We attribute these scale-dependent intercontinental differences to biogeographical and historical factors in Brazil that have led to a large regional pool of arboreal species of rainforest origin. Our study underlines the importance of biogeographical context when conducting comparative analyses of community structure across biogeographical scales, and highlights the importance of process acting at regional scales in determining species richness in ant communities.
Species diversity of insect herbivores associated to canopy may vary local and geographically responding to distinct factors at different spatial scales. The aim of this study was to investigate how forest canopy structure affects insect herbivore species richness and abundance depending on feeding guilds´ specificities. We tested the hypothesis that habitat structure affects insect herbivore species richness and abundance differently to sap-sucking and chewing herbivore guilds. Two spatial scales were evaluated: inside tree crowns (fine spatial scale) and canopy regions (coarse spatial scale). In three sampling sites we measured 120 tree crowns, grouped in five points with four contiguous tree crowns. Insects were sampled by beating method from each crown and data were summed up for analyzing each canopy region. In crowns (fine spatial scale) we measured habitat structure: trunk circumference, tree height, canopy depth, number of ramifications and maximum ramification level. In each point, defined as a canopy region (coarse spatial scale), we measured habitat structure using a vertical cylindrical transect: tree species richness, leaf area, sum of strata heights and maximum canopy height. A principal component analysis based on the measured variables for each spatial scale was run to estimate habitat structure parameters. To test the effects of habitat structure upon herbivores, different general linear models were adjusted using the first two principal components as explanatory variables. Sap-sucking insect species richness and all herbivore abundances increased with size of crown at fine spatial scale. On the other hand, chewer species richness and abundance increased with resource quantity at coarse scale. Feeding specialization, resources availability, and agility are discussed as ecological causes of the found pattern. Rev. Biol. Trop. 61 (1): 125-137. Epub 2013 March 01.
In mixed tropical landscapes, savanna and rain-forest vegetation often support contrasting biotas, and this is the case for ant communities in tropical Australia. Such a contrast is especially pronounced in monsoonal north-western Australia, where boundaries between rain forest and savanna are often extremely abrupt. However, in the humid tropics of north-eastern Queensland there is often an extended gradient between rain forest and savanna through eucalypt-dominated tall open forest. It is not known if ant community structure varies continuously along this gradient, or, if there is a major disjunction, where it occurs. We address this issue by sampling ants at ten sites distributed along a 6-km environmental gradient from rain forest to savanna, encompassing the crest and slopes of Mt. Lewis in North Queensland. Sampling was conducted using ground and baited arboreal pitfall traps, and yielded a total of 95 ant species. Mean trap species richness was identical in rain forest and rain-forest regrowth, somewhat higher in tall open forest, and twice as high again in savanna woodland. The great majority (78%) of the 58 species from savanna woodland were recorded only in this habitat type. MDS ordination of sites based on ant species composition showed a continuum from rain forest through rain-forest regrowth to tall open forest, and then a discontinuity between these habitat types and savanna woodland. These findings indicate that the contrast between rain forest and savanna ant communities in tropical Australia is an extreme manifestation of a broader forest-savanna disjunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.