Reprimo (RPRM), a member of the RPRM gene family, is a tumor-suppressor gene involved in the regulation of the p53-mediated cell cycle arrest at G2/M. RPRM has been associated with malignant tumor progression and proposed as a potential biomarker for early cancer detection. However, the expression and role of RPRM, as well as its family, are poorly understood and their physiology is as yet unstudied. In this scenario, a model system like the zebrafish could serve to dissect the role of the RPRM family members in vivo. Phylogenetic analysis reveals that RPRM and RPRML have been differentially retained by most species throughout vertebrate evolution, yet RPRM3 has been retained only in a small group of distantly related species, including zebrafish. Herein, we characterized the spatiotemporal expression of RPRM (present in zebrafish as an infraclass duplication rprma/rprmb), RPRML and RPRM3 in the zebrafish. By whole-mount in situ hybridization (WISH) and fluorescent in situ hybridization (FISH), we demonstrate that rprm (rprma/rprmb) and rprml show a similar spatiotemporal expression profile during zebrafish development. At early developmental stages rprmb is expressed in somites. After one day post-fertilization, rprm (rprma/rprmb) and rprml are expressed in the notochord, brain, blood vessels and digestive tube. On the other hand, rprm3 shows the most unique expression profile, being expressed only in the central nervous system (CNS). We assessed the expression patterns of RPRM gene transcripts in adult zebrafish and human RPRM protein product in tissue samples by RT-qPCR and immunohistochemistry (IHC) staining, respectively. Strikingly, tissue-specific expression patterns of the RPRM transcripts and protein are conserved between zebrafish and humans. We propose the zebrafish as a powerful tool to elucidate the both physiological and pathological roles of the RPRM gene family.
Vascular networks are comprised of endothelial cells and mural cells, which include pericytes and smooth muscle cells. To elucidate the mechanisms controlling mural cell recruitment during development and tissue regeneration, we studied zebrafish caudal fin arteries. Mural cells colonizing arteries proximal to the body wrapped around them, while those in more distal regions extended protrusions along the proximo-distal vascular axis. Both cell populations expressed platelet-derived growth factor receptor beta (pdgfrb) and the smooth muscle cell marker myosin heavy chain 11a (myh11a). Most wrapping cells in proximal locations additionally expressed acta2. Loss of Pdgfrb signalling specifically decreased mural cell numbers at the vascular front. Using lineage tracing, we demonstrate that precursor cells located in periarterial regions and expressing Pgdfrb can give rise to mural cells. Studying tissue regeneration, we did not find evidence that newly formed mural cells were derived from pre-existing ones. Together, our findings reveal conserved roles for Pdgfrb signalling in development and regeneration and suggest a limited capacity of mural cells to self-renew or contribute to other cell types during tissue regeneration.
Vascular networks are comprised of endothelial cells and mural cells, which include pericytes and smooth muscle cells. It is well established that new endothelial cells are derived from pre-existing ones during the angiogenic phase of blood vessel growth. By contrast, mural cell ontogeny is less clear with an ongoing debate whether mural cells possess mesenchymal stem cell properties. To elucidate the mechanisms controlling mural cell recruitment during development and tissue regeneration, we studied the formation of zebrafish caudal fin arteries. Mural cells showed morphological heterogeneity: cells colonizing arteries proximal to the body wrapped around them, while those in more distal regions extended protrusions along the proximo-distal vascular axis. Despite these differences, both cell populations expressed platelet-derived growth factor receptor beta (Pdgfrb) and the smooth muscle cell marker myosin heavy chain 11a (Myh11a). Loss of Pdgfrb signalling during development or tissue regeneration resulted in a substantial decrease in mural cells at the vascular front, while those proximal to the body were less affected. Using lineage tracing, we demonstrate that precursor cells located in periarterial regions of the caudal fin and expressing Pgdfrb can give rise to mural cells, while in regeneration newly formed mural cells were not derived from pre-existing ones. Together, our findings reveal conserved roles for pdgfrb signalling in development and regeneration, while at the same time illustrating a limited capacity of mural cells to self-renew or contribute to other cell types during tissue regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.